




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、絕密啟用前 試卷類型:A茂名市2015年第二次高考模擬考試數(shù)學(xué)試卷(理科) 2015.4【試卷綜述】本試卷注重基礎(chǔ)知識、基本技能的考查,符合高考命題的意圖和宗旨。注重基礎(chǔ)知識的考查。注重能力考查,要注重綜合性,又兼顧到全面,更注意突出重點試題減少了運算量、加大了思維量,降低了試題的入口難度,突出對歸納和探究能力的考查。【題文】第一部分 選擇題(共40分)【題文】一、選擇題:(本大題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的。)【題文】1. 設(shè)集合,則= ().ABC D【知識點】交集及其運算A1【答案】【解析】D 解析:集合,=,故選D【思路點撥】根據(jù)集
2、合,找出它們的公共元素,再求交集【題文】2. 復(fù)數(shù)為虛數(shù)單位)在復(fù)平面上對應(yīng)的點的坐標(biāo)是 ( ).A B C D【知識點】復(fù)數(shù)的代數(shù)表示法及其幾何意義L4【答案】【解析】B 解析:因為復(fù)數(shù)1=1+=1i,在復(fù)平面上對應(yīng)的點的坐標(biāo)為(1,1)故選B【思路點撥】通過復(fù)數(shù)i的冪運算,化簡復(fù)數(shù)為a+bi的形式,即可判斷復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標(biāo)【題文】3. 若離散型隨機變量的分布列為則的數(shù)學(xué)期望( ).A2 B2或 C D1【知識點】離散型隨機變量及其分布列【答案】【解析】C 解析:由離散型隨機變量分布列知:,解得,所以,故選C.【思路點撥】利用離散型隨機變量分布列的性質(zhì)求解【題文】4. 某三棱錐的
3、三視圖如圖所示,則該幾何體的體積為( ).A B C D4 【知識點】由三視圖求面積、體積G2【答案】【解析】B 解析:根據(jù)該幾何體的三視圖可得該幾何是一個以俯視圖為底面的三棱錐,棱錐的底面面積S=×4×2=4,棱錐的高h(yuǎn)=1,故棱錐的體積V=Sh=,故選:B【思路點撥】根據(jù)該幾何體的三視圖可得該幾何是一個以俯視圖為底面的三棱錐,求出棱錐的底面積和高,代入棱錐體積公式可得答案【題文】5. 設(shè)變量滿足約束條件,則的最小值為( ).A. -3 B. -1 C13 D-5【知識點】簡單線性規(guī)劃E5【答案】【解析】A 解析:畫出約束條件 的可行域如下圖:易知當(dāng)直線經(jīng)過C(3.-3)
4、時,取得最小值,最小值為-3,故選A.【思路點撥】先畫出約束條件 的可行域,再求出可行域中各角點的坐標(biāo),將各點坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)的最小值【題文】6. 已知等差數(shù)列 的前項和為,則( ).A 2B3 C4 D5 【知識點】等差數(shù)列的通項公式D2【答案】【解析】C 解析:設(shè)等差數(shù)列 的首項為,公差為,因為,所以,解得,故選C.【思路點撥】由等差數(shù)列的通項公式和求和公式可得a1和d的方程組,解方程由通項公式可得【題文】7. 在中, , ,則的面積為().A3B C6D4【知識點】向量的數(shù)量積公式;三角形面積公式F3【答案】【解析】D 解析:因為,所以,即,則,故選D.【思路
5、點撥】先利用已知條件結(jié)合向量的數(shù)量積公式得到,再利用三角形面積計算即可。【題文】8. 若函數(shù)在實數(shù)集上的圖象是連續(xù)不斷的,且對任意實數(shù)存在常數(shù)使得恒成立,則稱是一個“關(guān)于函數(shù)”現(xiàn)有下列“關(guān)于函數(shù)”的結(jié)論:常數(shù)函數(shù)是“關(guān)于函數(shù)”;“關(guān)于2函數(shù)”至少有一個零點;是一個“關(guān)于函數(shù)”其中正確結(jié)論的個數(shù)是 ( ).A1 B2 C3 D0【知識點】抽象函數(shù)及其應(yīng)用B10【答案】【解析】B 解析:對任一常數(shù)函數(shù),存在,有 所以有,所以常數(shù)函數(shù)是“關(guān)于函數(shù)”“關(guān)于2函數(shù)”為,當(dāng)函數(shù)不恒為0時有與同號定義在實數(shù)集上的函數(shù)的圖象是連續(xù)不斷的,圖象與軸無交點,即無零點。對于設(shè)存在使得,即存在使得,也就是存在使得,也
6、就是存在使得,此方程有解,所以正確。故正確是,故選:B【思路點撥】根據(jù)抽象函數(shù)的定義結(jié)合“關(guān)于t函數(shù)”的定義和性質(zhì)分別進行判斷即可【題文】第二部分 非選擇題(共110分)【題文】二、填空題:(考生作答6小題,每小題5分,共30分)(一)必做題(913題)【題文】9. 不等式的解集為 .【知識點】絕對值不等式的解法E2【答案】【解析】 解析:原不等式轉(zhuǎn)化為或或,解得其解集為,故答案為?!舅悸伏c撥】利用分類討論去掉題中的絕對值,得到相應(yīng)的不等式組,解不等式組,求出不等式組解集的交集,得到本題結(jié)論【題文】10. 已知是定義在上的奇函數(shù),當(dāng)>0 時, 1,則 .【知識點】函數(shù)奇偶性的性質(zhì)B4【答
7、案】【解析】 解析:,故答案為。【思路點撥】根據(jù)是奇函數(shù),故,而可直接代入已知函數(shù)中可求?!绢}文】11. 如圖所示的流程圖,若輸入的值為2,則輸出的值為 .【知識點】程序框圖L1【答案】【解析】7 解析:模擬執(zhí)行程序框圖,可得x=2不滿足條件x6,x=1,x=3不滿足條件x6,x=5,x=7滿足條件x6,退出循環(huán),輸出x的值為7故答案為:7【思路點撥】模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的x的值,x=7時,滿足條件x6,退出循環(huán),輸出x的值為7【題文】12. 已知直線與曲線相切于點(1,3),則的值為 .【知識點】利用導(dǎo)數(shù)研究曲線上某點切線方程B11【答案】【解析】3 解析:直線y=kx+1
8、與曲線y=x3+ax+b相切于點A(1,3),又y=x3+ax+b,y'=3x2+ax,當(dāng)x=1時,y'=3+a得切線的斜率為3+a,所以k=3+a;由得:b=3故答案為:3【思路點撥】由于切點在直線與曲線上,將切點的坐標(biāo)代入兩個方程,得到關(guān)于a,b,k 的方程,再求出在點(1,3)處的切線的斜率的值,即利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求出切線的斜率,再列出一個等式,最后解方程組即可得從而問題解決【題文】13. 已知拋物線與雙曲線有相同的焦點,是坐標(biāo)原點,點、是兩曲線的交點,若,則雙曲線的實軸長為 .【知識點】雙曲線的簡單性質(zhì)H6【答案】【解析】 解析:拋物
9、線與雙曲線有相同的焦點,點的坐標(biāo)為(1,0),軸.設(shè)點在第一象限,則點坐標(biāo)為(1,2)設(shè)左焦點為,則=2,由勾股定理得,由雙曲線的定義可知.【思路點撥】求出拋物線的焦點(1,0),即有雙曲線的兩個焦點,運用向量的數(shù)量積的定義可得點坐標(biāo),再由雙曲線的定義可得結(jié)論。【題文】(二)選做題(1415題,考生只能從中選做一題,兩題都答的,只計算第一題的得分)?!绢}文】14(坐標(biāo)系與參數(shù)方程選做題)已知圓的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)),則圓心到直線的距離為 .【知識點】簡單曲線的極坐標(biāo)方程N3【答案】【解析】2 解析:圓的極坐標(biāo)方程為=2c
10、os,轉(zhuǎn)化成直角坐標(biāo)方程為:x2+y22x=0,則:圓心坐標(biāo)為(1,0),直線l的參數(shù)方程為 (t為參數(shù)),轉(zhuǎn)化成直角坐標(biāo)方程為:x+y+21=0,則:圓心到直線的距離d=,故答案為:2【思路點撥】首先把圓的極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,再把參數(shù)方程轉(zhuǎn)換成直角坐標(biāo)方程,最后利用點到直線的距離公式求出結(jié)果【題文】15(幾何證明選講選做題)如圖,是圓的切線,切點為,點在圓上,則圓的面積為 .【知識點】與圓有關(guān)的比例線段N1【答案】【解析】 解析:弦切角等于同弧上的圓周角,BCD=60°,BOC=120°,BC=2,圓的半徑為:=2,圓的面積為:22=故答案為:【思路點撥】通過弦
11、切角,求出圓心角,結(jié)合弦長,得到半徑,然后求出圓的面積【題文】三、解答題:(解答應(yīng)寫出文字說明、證明過程或演算步驟,共80分)【題文】16. (本小題滿分12分)已知函數(shù)圖象的一部分如圖所示.(1)求函數(shù)的解析式;(2)設(shè),, ,求的值.【知識點】兩角和與差的正弦函數(shù);由y=Asin(x+)的部分圖象確定其解析式C4 C5【答案】【解析】(1);(2) 解析:(1)由圖象可知, 1分 . 3分 . 4分(2) ,6分又 ,8分,. 10分12分【思路點撥】(1)由圖象可得A,T,由周期公式可求,從而可求函數(shù)f(x)的解析式;(2)由,可求cos,又由,可求sin,結(jié)合角的范圍可求sin,cos
12、,由兩角差的正弦函數(shù)公式即可得解【題文】17. (本小題滿分12分)從某企業(yè)的某種產(chǎn)品中隨機抽取500件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:(1)求這500件產(chǎn)品中質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品件數(shù);(2)以這500件產(chǎn)品的樣本數(shù)據(jù)來估計總體數(shù)據(jù),若從該企業(yè)的所有該產(chǎn)品中任取2件,記產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的件數(shù)為,求隨機變量的概率分布列.【知識點】頻率分布直方圖I2【答案】【解析】(1)275;(2)見解析 解析:(1)產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率為(0.022+0.033)×10=0.55質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品件數(shù)為0.55×500=275
13、 4分(2)根據(jù)樣本頻率分布直方圖,每件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的概率為0.1, 6分由題意可得: B(2,0.1) , , .的概率分布列為012P0.810.180.0112分【思路點撥】(1)求出這一批產(chǎn)品中測量結(jié)果在的產(chǎn)品的概率,即可求得結(jié)論;(2)根據(jù)樣本頻率分布直方圖,每件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的概率為0.1,由題意可得: B(2,0.1),進而列出分布列?!绢}文】18. (本小題滿分14分)在四棱錐中, 平面, ,底面是梯形,,(1)求證:平面平面;(2)設(shè)為棱上一點,試確定的值使得二面角為60º.【知識點】用空間向量求平面間的夾角;平面與平面垂直的判定G5 G11【
14、答案】【解析】(1)見解析;(2) 解析:(1)證明:平面,在梯形中,過點作作,在中,又在中,.3分 . 5分. 6分 7分(2)法一:過點作交于點,過點作垂直于于點,連. 8分由(1)可知平面,平面,平面, ,是二面角的平面角, 10分 , ,由(1)知=,,又 12分 , . 14分(2)法二:以為原點,所在直線為軸建立空間直角坐標(biāo)系 (如圖) 則. 令,則 . 9分平面, 是平面的法向量. 10分設(shè)平面的法向量為.則 ,即 即 .令,得 12分二面角為, 解得, 在棱上, 為所求. 14分【思路點撥】(1)過點B作BHCD于H,證明BCBDPDBC,通過直線與平面垂直的判定定理證明BC平
15、面PBD,利用直線與平面垂直的性質(zhì)定理證明平面PBC平面PBD;(2)以D為原點,DA,DC,DP所在直線為x,y,z軸建立空間直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),平面PBD的法向量平面QBD的法向量,通過二面角結(jié)合數(shù)量積求解即可【題文】19. (本小題滿分14分)已知數(shù)列的前項和為,數(shù)列的前項和為,且有 , 點在直線上. (1)求數(shù)列的通項公式;(2)試比較與的大小,并加以證明.【知識點】數(shù)列遞推式;數(shù)列的求和D1 D4【答案】【解析】(1);(2)見解析 解析:(1)當(dāng)時, , 解得: 1分 當(dāng)時, , 則有 ,即: 是以為首項,為公比的等比數(shù)列. 3分. 4分(2) 點在直線上 . 5分因為,
16、所以. 由-得, 所以. 8分因為 所以確定與的大小關(guān)系等價于比較與 的大小. 9分當(dāng)時,; 當(dāng)時, ;當(dāng)時, ; 當(dāng)時, 可猜想當(dāng)時, 10分證明如下:當(dāng)時, . 13分綜上所述, 當(dāng)時, ;當(dāng)時, ;當(dāng)時, . 14分【思路點撥】(1)利用遞推式與等比數(shù)列的通項公式可得an;(2)作差比較大小即可得出【題文】20. (本小題滿分14分)已知中心在原點,焦點在坐標(biāo)軸上的橢圓過點,離心率為,過直線上一點引橢圓的兩條切線,切點分別是、.(1)求橢圓的方程;(2)若在橢圓上的任一點處的切線方程是.求證:直線恒過定點,并求出定點的坐標(biāo);(3)是否存在實數(shù),使得恒成立?(點為直線恒過的定點)若存在,求
17、出的值;若不存在,請說明理由.【知識點】直線與圓錐曲線的關(guān)系;利用導(dǎo)數(shù)研究曲線上某點切線方程;橢圓的標(biāo)準(zhǔn)方程B11 H5 H8【答案】【解析】(1);(2)直線恒過定點;(3)存在實數(shù),使得恒成立. 解析:(1)由橢圓過點,可得 1分又, 2分解得:. 3分所以橢圓方程為. 4分(2)設(shè)切點坐標(biāo)為,直線上一點的坐標(biāo),則切線方程分別為, 5分又因為兩切線均過點,則 6分即點的坐標(biāo)都適合方程,而兩點確定唯一的一條直線,故直線的方程是 7分顯然對任意實數(shù),點(1,0)都適合這個方程,故直線恒過定點 8分 (3)將直線的方程,代入橢圓方程,得,即,9分所以 10分不妨設(shè),因為,同理 11分所以12分即
18、 13分故存在實數(shù),使得恒成立. 14分【思路點撥】(1)設(shè)橢圓方程為,根據(jù)它的一個焦點和拋物線y2=4x的焦點重合,從而求出c值,再求出a和b的值,從而求解;(2)切點坐標(biāo)為A(x1,y1),B(x2,y2),直線l上一點M的坐標(biāo)(4,t),求出切線方程,再把點M代入切線方程,說明點A,B的坐標(biāo)都適合方程,而兩點之間確定唯一的一條直線,從而求出定點;(3)聯(lián)立直線方程和橢圓的方程進行聯(lián)立,求出兩根的積和兩根的和,求出|AC|,|BC|的長,求出的值看在不在,再進行判斷。【題文】21. (本小題滿分14分)設(shè)函數(shù) (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)是函數(shù)圖象上任意不同的兩點,線段的中點為C,直線AB的斜率為. 證明:;(3)設(shè),對任意,都有,求實數(shù)的取值范圍.【知識點】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;函數(shù)的單調(diào)性及單調(diào)區(qū)間;函數(shù)單調(diào)性的性質(zhì);導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用B11 B12【答案】【解析】(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)見解析;(3)。 解析:(1)當(dāng)時,定義域為 2分當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增,綜上,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為 4分(2)證明:,5分又,所以,6分要證,即證,不妨設(shè),即證,即證,設(shè),即證:, 7分也
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤礦機電事故剖析
- 2024年09月浙江醫(yī)療衛(wèi)生招聘寧波大學(xué)附屬人民醫(yī)院公開招聘編外人員2人筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 2025年探討房屋按揭貸款保險合同中的受益人及受償權(quán)益
- 醫(yī)學(xué)培訓(xùn)課件病理學(xué)-寄生蟲病
- 危險源辨識專項培訓(xùn)
- 2024年09月河北承德興隆縣直(鄉(xiāng)鎮(zhèn))事業(yè)單位招聘100人(醫(yī)療崗28人)筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 科技創(chuàng)新與智能化趨勢研究考核試卷
- 石墨在航空航天涂料的研究考核試卷
- 6-通風(fēng)網(wǎng)絡(luò)及風(fēng)量分配與調(diào)節(jié)
- 2024年09月漢中腦安康復(fù)醫(yī)院招聘(12人)筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 【培訓(xùn)課件】行政事業(yè)單位內(nèi)部控制規(guī)范
- 中華民族共同體概論講稿專家版《中華民族共同體概論》大講堂之 第八講 供奉中國與中華民族內(nèi)聚發(fā)展(遼宋夏金時期)
- 消防維保質(zhì)量管理及保證措施
- 【MOOC】大學(xué)物理 I-(力學(xué)、相對論、電磁學(xué))-北京交通大學(xué) 中國大學(xué)慕課MOOC答案
- 痛經(jīng)的中醫(yī)療法
- 《營銷管理與分析》課件
- 測繪技術(shù)服務(wù)方案
- 神經(jīng)外科類醫(yī)用耗材(腦脊液分流系統(tǒng))省際聯(lián)盟集采中選產(chǎn)品供應(yīng)清單
- 國家安全教育第一章完整準(zhǔn)確領(lǐng)會總體國家安全觀
- 《中華人民共和國藥品管理法實施條例》
- 復(fù)合材料制造培訓(xùn)課件
評論
0/150
提交評論