外文翻譯--偽形的機(jī)械結(jié)構(gòu)優(yōu)化構(gòu)形理論  英文版.pdf_第1頁(yè)
外文翻譯--偽形的機(jī)械結(jié)構(gòu)優(yōu)化構(gòu)形理論  英文版.pdf_第2頁(yè)
外文翻譯--偽形的機(jī)械結(jié)構(gòu)優(yōu)化構(gòu)形理論  英文版.pdf_第3頁(yè)
外文翻譯--偽形的機(jī)械結(jié)構(gòu)優(yōu)化構(gòu)形理論  英文版.pdf_第4頁(yè)
外文翻譯--偽形的機(jī)械結(jié)構(gòu)優(yōu)化構(gòu)形理論  英文版.pdf_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ORIGINALARTICLEPseudo-constructaltheoryforshapeoptimizationofmechanicalstructuresJeanLucMarcelinReceived:10January2007/Accepted:1May2007/Publishedonline:25May2007#Springer-VerlagLondonLimited2007AbstractThisworkgivessomeapplicationsofapseudo-constructaltechniqueforshapeoptimizationofmechanicalstructures.Inthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedlikelimitationsoroptimizationconstraints.Twoapplicationsarepresented;thefirstonedealswiththeoptimizationoftheshapeofadropofwaterbyusingageneticalgorithmwiththepseudo-constructaltechnique,andthesecondonedealswiththeoptimizationoftheshapeofahydraulichammersrearbearing.KeywordsShapeoptimization.Constructal.Geneticalgorithms1IntroductionThispaperintroducesapseudo-constructalapproachtoshapeoptimizationbasedontheminimizationofthetotalpotentialenergy.Wearegoingtoshowthatminimizingthetotalpotentialenergyofastructuretofindtheoptimalshapemightbeagoodideainsomecases.Thereferencetotheconstructaltheorycanbejustifiedinsomewayforthefollowingreasons.AccordingtoBejan1,shapeandstructurespringfromthestruggleforbetterperformanceinbothengineeringandnature;theobjectiveandconstraintsprincipleusedinengineeringisthesamemechanismfromwhichthegeometryinnaturalflowsystemsemerges.Bejan1startswiththedesignandoptimizationofengineeringsystemsanddiscoversadeterministicprincipleforthegenerationofgeometricforminnaturalsystems.Thisobservationisthebasisofthenewconstructaltheory.Optimaldistributionofimperfectionisdestinedtoremainimperfect.Thesystemworksbestwhenitsimperfectionsarespreadaroundsothatmoreandmoreinternalpointsarestressedasmuchasthehardestworkingparts.Seeminglyuniversalgeometricformsunitetheflowsystemsofengineeringandnature.Bejan1advancesanewtheoryinwhichheunabashedlyhintsthathislawisinthesameleagueasthesecondlawofthermodynamics,becauseasimplelawispurportedtopredictthegeometricformofanythingaliveonearth.Manyapplicationsoftheconstructaltheoryweredevelopedinfluidsmechanics,inparticularfortheoptimizationofflows210.Ontheotherhand,thereexists,toourknowledge,littleexamplesofapplicationsinsolidsorstructuresmechanics.Sowehaveatleasthalfofthereferencestopapersinfluiddynamics(mostofthesameauthor),becausetheconstructalmethodwasdevelopedfirstbythesameauthor,AdrianBejan,withonlyreferencestopapersinfluiddynamics.Theconstructaltheoryrestsontheassumptionthatallcreationsofnatureareoveralloptimalcomparedtothelawswhichcontroltheevolutionandtheadaptationofthenaturalsystems.Theconstructalprincipleconsistsofdistributingtheimperfectionsaswellaspossible,startingfromthesmallestscalestothelargest.Theconstructaltheoryworkswiththetotalmacroscopicstructurestartingfromtheassemblyofelementarystruc-tures,bycomplyingwiththenaturalrulesofoptimaldistributionoftheimperfections.Theobjectiveistheresearchoflowercost.IntJAdvManufTechnol(2008)38:16DOI10.1007/s00170-007-1080-2J.L.Marcelin(*)LaboratorieSolsSolidesStructures3S,UMRCNRSC5521,DomaineUniversitaire,BPn53,38041GrenobleCedex9,Francee-mail:Jean-Luc.Marcelinujf-grenoble.frHowever,aglobalandmacroscopicsolutionfortheoptimizationofmechanicalstructureshavingleastcostastheobjectivecanbeveryclosetotheconstructaltheory,fromwherethetermpseudo-constructalcomes.Theconstructaltheoryisapredictivetheory,withonlyonesingleprincipleofoptimizationfromwhichallrises.Thesameappliestothepseudo-constructalstepwhichisthesubjectofthisarticle.Thesingleprincipleofoptimiza-tionofthepseudo-constructaltheoryistheminimizationoftotalpotentialenergy.Moreover,inourexamplespresentedhereafter,thepseudo-constructalprinciplewillbeassociatedwithageneticalgorithm,withtheresultthatouroptimizationwillbeveryclosetothenaturallaws.Theobjectiveofthispaperisthustoshowhowthepseudo-constructalstepcanapplytothemechanicsofthestructures,andinparticulartotheshapeoptimizationofmechanicalstructures.Thebasicideaisverysimple:amechanicalstructureinabalancedstatecorrespondstoaminimaltotalpotentialenergy.Inthesameway,anoptimalmechanicalstructuremustalsocorrespondtoaminimaltotalpotentialenergy,anditisthisobjectivewhichmustintervenefirstoveralltheothers.Itisthisideawhichwillbedevelopedinthisarticle.Twoexampleswillbepresentedthereafter.Theideatominimizetotalpotentialenergyinordertooptimizeamechanicalstructureisnotbrandnew.Manypapersalreadydealwiththisproblem.Whatisnew,istomakethisapproachsystematic.Theonlyobjectiveofoptimizationbecomestheminimizationofenergy.InGosling11,asimplemethodisproposedforthedifficultcaseofform-findingofcablenetandmembranestructures.Thismethodisbaseduponbasicenergyconcepts.Atruncatedstrainexpressionisusedtodefinethetotalpotentialenergy.ThefinalenergyformisminimizedusingthePowellalgorithm.InKannoandOhsaki12,theminimumprincipleofcomplementaryenergyisestablishedforcablenetworksinvolvingonlystresscomponentsasvariablesingeometricallynonlinearelasticity.Inordertoshowthestrongdualitybetweentheminimizationproblemsoftotalpotentialenergyandcomplementaryenergy,theconvexformulationsoftheseproblemsareinvestigated,whichcanbeembeddedintoaprimal-dualpairofsecond-orderprogrammingproblems.InTaroco13,shapesensitivityanalysisofanelasticsolidinequilibriumispresented.Thedomainandboundaryintegralexpressionsofthefirstandsecond-ordershapederivativesofthetotalpotentialenergyareestablished.InWarner14,anoptimaldesignproblemissolvedforanelasticrodhangingunderitsownweight.Thedistributionofthecross-sectionalareathatminimizesthetotalpotentialenergystoredinanequilibriumstateisfound.Thecompanionproblemofthedesignthatstoresthemaximumpotentialenergyunderthesameconstraintconditionsisalsosolved.InVentura15,theproblemofboundaryconditionsenforcementinmeshlessmethodsissolved.InVentura15,themovingleast-squaresapproximationisintroducedinthetotalpotentialenergyfunctionalfortheelasticsolidproblemandanaugmentedLagrangiantermisaddedtosatisfyessentialboundaryconditions.Theprincipleofminimizationoftotalpotentialenergyisinadditionatthebaseofthegeneralfiniteelementsformulation,withanaimoffindingtheunknownoptimalnodalfactors16.2ThemethodsusedInthepseudo-constructaltheorydevelopedinthispaper,themainobjectiveofoptimizationisonlytheminimizationoftotalpotentialenergy.Theotherobjectivesusuallyusedinmechanicalstructuresoptimizationaretreatedherelikelimitationsoroptimizationconstraints.Forexample,onemayhavelimitationsontheweight,ortonotexceedthevalueofastress.Theideawhichwillbedevelopedinthispaperisthusverysimple.Amechanicalstructureisdescribedbytwotypesofparameters:variablesknownasdiscretizationvariables(forexample,degreesoffreedomindisplacementforfiniteelementsmethod),andgeometricalvariablesofdesign(forexampleparameterswhichmakeitpossibletodescribethemechanicalstructureshape).Totalpotentialenergydependsonanimplicitorexplicitwayofdetermin-ingdiscretizationanddesignvariablesatthesametime.Onethuswillcarryoutadoubleoptimizationofthemechanicalstructure,comparedtothediscretizationanddesignvariables;theobjectivebeingtominimizetotalpotentialenergyoverall.Clearly,theproblemofoptimiza-tionofamechanicalstructurewillbeaddressedbythefollowingapproach:Objective:tominimizetotalpotentialenergyVariablesofoptimization:concurrentlydeterminingdiscretizationvariables(inthecaseofatraditionaluseofthefiniteelementmethodinmechanicsofstruc-tures),anddesignvariablesdescribingtheshapeofthestructureOptimizationlimitations:WeightorvolumeDisplacementsorstrainsStressesFrequenciesTheproblemofoptimizationofamechanicalstructurewillbesolvedinthefollowingway,whilereiteratingon2IntJAdvManufTechnol(2008)38:16thesestages,ifneeded(accordingtothenatureoftheproblem):Stage1Minimizationofthetotalpotentialenergyofthemechanicalstructurecomparedtotheonlydis-cretizationvariablesofthestructure(degreesoffreedominfiniteelements).Itactshereasanoptimizationwithoutoptimizationlimitations.Theonlylimitationsatthisstageareofpurelymechanicalorigin,andrelatetotheboundaryconditionsandtotheexternaleffortsappliedtothestructure.Inthisstage1,thedesignvariablesremainfixed,andoneobtainstheimplicitorexplicitexpressionsofthedegreesoffreedomaccordingtothedesignvariables(whichcanbethevariableswhichmakeitpossibletodescribetheshape,inthecaseofashapeoptimization,forexample).Onewillseeintheexamplesofthefollowingpartthattheseexpressionscanbeexplicitorimplicitandwhichisthesuitabletreatmentfollowingthecases.Inthecaseofafiniteelementsmethodofcalculation,thisstage1isthebasisoffiniteelementscalculationtoobtainthedegreesoffreedomofthemechanicalstructure.Indeed,infiniteelements,displacementswiththenodesofthemechanicalstructuremeshareobtainedbyminimizationoftotalpotentialenergy16.Stage2Theexpressionsofthedegreesoffreedomofthemechanicalstructureaccordingtothedesignvariablesobtainedpreviouslyaretheninjectedintothetotalpotentialenergyofthemechanicalstructure(onewillseeinthesecondexampleofthefollowingparthowonetreatsthecasewherethedegreesoffreedomareimplicitfunctionsofthedesignvariables).Onethenobtainsanexpressionofthetotalpotentialenergywhichdependsonlyonthedesignvariables(inexplicitorimplicitform).Stage3Onethencarriesoutasecondandnewminimi-zationofthetotalpotentialenergyobtainedintheprecedingform,butthistimecomparedtothedesignvariableswhilerespectingthetechnolog-icallimitationsortheoptimizationconstraintsoftheproblem.Thismethodcanbeappliedwithmoreorlessfacilityaccordingtothenatureoftheproblem.Itisclear,forexample,thatifthediscretizationvariablescanbeexpressedinanexplicitwayaccordingtothedesignvariables,thesettinginofstages2to3isimmediate,andwithoutiterations.Ifthediscretizationvariablescannotbeexpressedinanexplicitwayaccordingtothedesignvariables,orifthetopologyofthestructureisnotfixed,orifthebehaviorisnotlinear,itwillbenecessarytoproceedbysuccessiveiterationsonstages1to3.Itisthecaseoftheexamplespresentedinthefollowingpart,andonewillseeonthisoccasionwhichtypeofstrategyonecanadoptfortheseiterations.Tosummarize,inthepseudo-constructalstep,themainobjectiveisonlytheminimizationoftotalpotentialenergy,theotherpossibleobjectivesaretreatedlikelimitationsoroptimizationconstraints.TheoptimizationmethodusedforourexamplesisGA(geneticalgorithm),asdescribedin17.Exampleswithsimilarinstructionalvaluecanalsobefoundinmanybooks,e.g.in18.Thisevolutionarymethodisveryconvenientforourpseudo-constructalmethod.TheauthorhasworkedextensivelyinGAsandpublishedinsomereputedjournalsonthistopic1931.AsthetopicofGAsisstillrelativelynewinthestructuralmechanicscommu-nity,weprovideheresomedetailsofexactlywhatisusedinthisGA.Amultiplepointcrossoverisusedratherthanasinglepointcrossover.Theselectionschemeusedateachgenerationisentirelystochastic.Forourexamples,thenumberofgenerationsisequaltothatusedforconver-gence.TheresultsprovidedforourexampleswereconsistentlyreproducedbyusingdifferentseedsintheGA.Ithasbeenprovedthataratherstandardgeneticalgorithmissufficientforourexamples.3ExamplesEventhoughpotentialenergymaybeagoodmeasureforsomeoptimizations,potentialenergyisnotwhatgivestheshapetoawaterdroplet,nordefinestheoptimalshapeforahammer,whichiswhypotentialenergyisnottheonlyobjective;buttheoptimizationproblemisamultiobjectiveoneandtheobjectivefunctionsforthetwoexamplesarethenclearlyformulated.3.1Example1:optimizationoftheshapeofadropofwaterThefirsttestexampleistheoptimizationoftheshapeofadropofwater(Fig.1).Thisproblemisequivalenttoanequalresistancetankcalculatedbythemembranetheory.Theobjectiveistoseeifthepseudo-constructaltheorygivesthenaturesoptimumdesign.3.1.1ThemethodsusedThegeometryofthedropofwaterisdefinedbythegeneratinglineofathinaxisymmetricshell.Thislineisdescribedbysuccessivestraightorcircularsegmentsdescribedinagivensenseanddefinedbyinputdataofmasterpointcoordinatesandradiusvalues.Theinitialdataareasetofnodalpointsconnectedbystraightsegments.EachnodalpointisidentifiedbyitstwocylindricalIntJAdvManufTechnol(2008)38:163coordinates(r,z),andarealRwhichrepresentstheradiusofthecircletangenttothetwostraightsegmentsintersect-ingatthepoint.Theothercomputercalculationsgivethecoordinatesofanyboundarypointandespeciallythetangentpointsnecessarytodefinethecirculararclengths.ThedesignofthedropofwaterisdescribedbythreearcsofcirclesasindicatedinFig.1.Analysisisperformedbythefiniteelementmethodwiththree-nodeparabolicelementsusingtheclassicalLove-Kirchoffshelltheory.Anautomaticmeshgeneratorcreatesthefiniteelementmeshofeachstraightorcircularsegmentconsideredasamacrofiniteelement.Theobjectiveistoobtainashapeforthedropofwatergivingrisetoaminimumtotalpotentialenergy(whichisthemainobjective)andanequalresistancetank(whichistheonlyconstraintorlimitationoftheproblem).Infact,forthedropofwaterproblem,thegoalisamulti-objectiveone,thetwoobjectives(f1=minimumtotalpotentialenergyandf2=equalresistance)arecombinedinamulti-objective:f=f1+f2.TheconstraintorlimitationoftheproblemistakenintoaccountbyapenalizationofthetotalpotentialenergyasindicatedinMarcelinetal.TheresultsThedesignofthedropofwaterisdescribedbythreearcsofacircle(Fig.1).Th

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論