




已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
外文部分Chapter2Planewaves2.1IntroductionInthischapterwepresentthefoundationsofFourieracoustics-planewaveexpansions.Thismaterialispresentedindepthtoprovideafirmfoundationfortherestofthebook,introducingconceptslikewavenumberspaceandtheextrapolationofwavefieldsfromonesurfacetoanother.Fouriesacousticsisusedtoderivesomefamoustoolsfortheradiationfromplanarsources;theRayleighintegrals,theEwaldsphereconstructionoffarfieldradiation,thefirstproducttheoremforarrays,vibratingplateradiation,andradiationclassificationtheory.Finally,anewtoolcalledsupersonicintensityisintroducedwhichisusefulinlocatingacousticsourcesonvibratingstructures.Webeginthechapterwithareviewofsomefundamentals;thewaveequation,Eulersequation,andtheconceptofacousticintensity.2.2TheWaveEquationandEulersEquationLetp(x,y,z,t)beaninfinitesimalvariationofacousticpressurefromitsequilibriumvaluewhichsatisfiestheacousticwaveequation222210ppct(2.1)forahomogeneousfluidwithnoviscosity.cisaconstantandreferstothespeedofsoundinthemedium.At020Cc=343m/sinairandc=1481m/sinwater.TherighthandsideofEq.(2.1)indicatesthattherearenosourcesinthevolumeinwhichtheequationisvalid.InCartesiancoordinates2222222xyzAsecondequationwhichwillbeusedthroughoutthisbookiscalledEulersequation,0vpt(2.2)Wherev(Greekletterupsilon)representsthevelocityvectorwithcomponentsu,v,w;vuivjwk(2.3)whereijandkaretheunitvectorsinthethex,y,andzdirections,respectively,andthegradientintermsoftheunitvectorsasijkxyz(2.4)WeusetheconventionofadotoveradisplacementsquantitytoindicatevelocityasisdoneinJungerandFeit.Thedisplacementsinthethreecoordinatedirectionsaregivenbyu,v,andw.ThederivationofEq.(2.2)isusefulindevelopingsomeunderstandingofthephysicalmeaningofpandv.Letusproceedinthisdirection.Figure2.1:InfinitesimalvolumeelementtoillustrateEulersequationFigure2.1showsaninfinitesimalvolumeelementoffluidxyz,withthexaxisasshown.Allsixfacesexperienceforcesduetothepressurepinthefluid.Itisimportanttorealizethatpressureisascalarquantity.Thereisnodirectionassociatedwithit.Ithasunitsofforceperunitarea,2/NmorPascals.Thefollowingistheconventionforpressure,P0CompressionP0RarefactionAtaspecificpointinafluid.apositivepressureindicatesthataninfinitesimalvolumesurroundingthepointisundercompression,andforcesareexertedoutwardfromthisvolume.ItfollowsthatifthepressureattheleftfaceofthecubeinFig.2.1ispositive,thenaforcewillbeexertedinthepositivexdirectionofmagnitudep(x,y,z)yz.Thepressureattheoppositefacep(x+x,y,z)isexertedinthenegativexdirection.Weexpandp(x+x,y,z)inaTaylorseriestofirstorder,asshowninthefigure.Notethattheforcearrowsindicatethedirectionofforceforpositivepressure.Giventhedirectionsofforceshown,thetotalforceexertedonthevolumeinthexdirectionis(,)(,)ppxyzpxxyzyzxyzxNowweinvokeNewtonsequation,f=ma=mut,wherefistheforce,0mxyzand0isthefluiddensity,yielding0uptxCarryingoutthesameanalysisintheyandzdirectionsyieldsthefollowingtwoequations:0uptyand0uptzWecombinetheabovethreeequationsintooneusingvectorsyieldingEq(2.2)above,EulersEquation.2.3InstantaneousAcousticIntensityItiscriticalinthestudyofacousticstounderstandcertainenergyrelationships.Mostimportantistheacousticintensityvector.Inthetimedomainitiscalledtheinstantaneousacousticandisdefinedas()()()Itptvt,(2.5)withunitsofenergyperunittime(power)perunitarea,measuredas(joules/s)/2morwatts/2m.Theacousticintensityisrelatedtotheenergydensityethroughitsdivergence,eIt,(2.6)wherethedivergenceisyxzIIIIxyz(2.7)Theenergydensityisgivenby2211022|()|()evtpt(2.8)whereisthefluidcompressibility,201c(2.9)Equation(2.6)expressesthefactthatanincreaseintheenergydensityatsomepointinthefluidisindicatedbyanegativedivergenceoftheacousticintensityvector;theintensityvectorsarepointingintotheregionofincreaseinenergydensity.Figure2.2shouldmakethisclear.IfwereversethearrowsinFig.2.2,apositivedivergenceresultsandtheenergydensityatthecentermustdecrease,thatis,et0.Thiscaserepresentsanapparentsourceofenergyatthecenter.Figure2.2:Illustrationofnegativedivergenceofacousticintensity.Theregionatthecenterhasanincreasingenergydensitywithtime,thatis,anapparentsinkofenergy.2.4SteadyStateToconsiderphenomenainthefrequencydomain,weobtainthesteadythesteadystatesolutionthroughtransforms()1()2iwtptpwedw(2.10)leadingtothesteadystatesolution()()iwtpwptedt(2.11)Equation(2.10)canbedifferentiatedwithrespecttotimetoyieldtheimportantrelationship()1()2iw
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025授權經(jīng)營合同書模板
- 2025橋梁工程施工勞務承包合同
- 2025專屬定制購銷合同范本
- 《關愛地球家園》課件
- 2025攜手LED顯示屏購銷合同
- 2025財務經(jīng)理勞動合同模板
- 疆子公司轉讓合同協(xié)議
- 珠寶主播運營合同協(xié)議
- 用餐年合同協(xié)議
- 球場材料維修合同協(xié)議
- 《荷塘月色》課件+2024-2025學年統(tǒng)編版高中語文必修上冊
- 軟著著作權單位與個人合作開發(fā)協(xié)議書(2篇)
- 2024年江蘇省南通市中考英語試卷(含答案解析)
- 成人中心靜脈導管(CVC)堵塞風險評估及預防-2024團體標準
- 人教版四年級語文下冊期中考試及答案
- 下學期八年級期中考試家長會課件
- 2024年全國統(tǒng)一考試高考新課標Ⅰ卷數(shù)學試題(真題+答案)
- 海口2024年中國熱帶農業(yè)科學院海口實驗站招聘筆試歷年典型考題及考點附答案解析
- 江蘇2024年江蘇國際文化交流中心招聘人員筆試歷年典型考題及考點附答案解析
- 安全風險分級管控與隱患排查治理雙重預防體系-污水處理廠模板
- 2024年廣東省中考歷史試卷試題真題及答案(精校打印版)
評論
0/150
提交評論