




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省樂山市第一中學2025屆高三數學試題第二次統測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,則()A. B. C. D.2.把函數的圖象向右平移個單位長度,得到函數的圖象,若函數是偶函數,則實數的最小值是()A. B. C. D.3.已知集合,,則為()A. B. C. D.4.執行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或5.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.206.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.7.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.8.設,是方程的兩個不等實數根,記().下列兩個命題()①數列的任意一項都是正整數;②數列存在某一項是5的倍數.A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤9.閱讀下側程序框圖,為使輸出的數據為31,則①處應填的數字為A.4 B.5 C.6 D.710.若復數是純虛數,則實數的值為()A.或 B. C. D.或11.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,12.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.14.拋物線上到其焦點距離為5的點有_______個.15.已知為等差數列,為其前n項和,若,,則_______.16.在各項均為正數的等比數列中,,且,成等差數列,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.18.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數的取值范圍;(2)求證:.19.(12分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.20.(12分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.21.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.22.(10分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據復數的運算法則,可得,然后利用復數模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A本題主要考查復數的運算,考驗計算,屬基礎題.2.A【解析】
先求出的解析式,再求出的解析式,根據三角函數圖象的對稱性可求實數滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數解析式為,故.令,,解得,.因為為偶函數,故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.本題考查三角函數的圖象變換以及三角函數的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數圖象的對稱軸,則有,本題屬于中檔題.3.C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.4.D【解析】
根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得
,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.5.B【解析】
由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.6.B【解析】
求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.7.A【解析】
畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.8.A【解析】
利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數根,所以,,因為,所以,即當時,數列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數列的任意一項都是正整數,故①正確;若數列存在某一項是5的倍數,則此項個位數字應當為0或5,由,,依次計算可知,數列中各項的個位數字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數列中不存在個位數字為0或5的項,故②錯誤;故選:A.本題主要考查數列遞推公式的推導,考查數列性質的應用,考查學生的綜合分析以及計算能力.9.B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續循環循環前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.10.C【解析】試題分析:因為復數是純虛數,所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數11.B【解析】
試題分析:由程序框圖可知,框圖統計的是成績不小于80和成績不小于60且小于80的人數,由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.12.B【解析】
根據題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.14.2【解析】
設符合條件的點,由拋物線的定義可得,即可求解.【詳解】設符合條件的點,則,所以符合條件的點有2個.故答案為:2本題考查拋物線的定義的應用,考查拋物線的焦半徑.15.1【解析】試題分析:因為是等差數列,所以,即,又,所以,所以.故答案為1.【考點】等差數列的基本性質【名師點睛】在等差數列五個基本量,,,,中,已知其中三個量,可以根據已知條件,結合等差數列的通項公式、前項和公式列出關于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應用.16.【解析】
利用等差中項的性質和等比數列通項公式得到關于的方程,解方程求出代入等比數列通項公式即可.【詳解】因為,成等差數列,所以,由等比數列通項公式得,,所以,解得或,因為,所以,所以等比數列的通項公式為.故答案為:本題考查等差中項的性質和等比數列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數列通項公式是求解本題的關鍵;屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.18.(1);(2)見解析【解析】
(1)利用導數研究的單調性,分析函數性質,數形結合,即得解;(2)構造函數,可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數,,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.本題考查了函數與導數綜合,考查了學生數形結合,綜合分析,轉化劃歸,邏輯推理,數學運算的能力,屬于較難題.19.(1),(2)【解析】
先求出,再求圓的半徑和極坐標方程;(2)設求出,,再求出得解.【詳解】(1)將化成直角坐標方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標方程,得.即圓M的極坐標方程為.(2)設,則,用代替.可得,本題主要考查直角坐標和極坐標的互化,考查極徑的計算,意在考查學生對這些知識的理解掌握水平.20.(1);(2)【解析】
(1)先將曲線的參數方程化為普通方程,再將普通方程化為極坐標方程即可.(2)將和的極坐標方程聯立,求得兩個曲線交點的極坐標,即可由極坐標的含義求得的面積.【詳解】(1)曲線的參數方程為(α為參數),消去參數的的直角坐標方程為.所以的極坐標方程為(2)解方程組,得到.所以,則或().當()時,,當()時,.所以和的交點極坐標為:,.所以.故的面積為.本題考查了參數方程與普通方程的轉化,直角坐標方程與極坐標的轉化,利用極坐標求三角形面積,屬于中檔題.21.(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】
(1)在直角梯形中,根據,,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據平面平面,利用面面垂直的性質定理證明.(2)建立空間直角坐標系:假設在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結,則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.本題主要考查面面垂直的性質定理和向量法研究線面角問題,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.22.(1);(2).【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學四年級口算題大全(10000道)
- 統編版語文五年級下冊第15課《自相矛盾》精美課件
- 山西運城農業職業技術學院《康復工程學》2023-2024學年第二學期期末試卷
- 山西同文職業技術學院《乒乓球V》2023-2024學年第二學期期末試卷
- 益陽職業技術學院《徽州民間音樂采風》2023-2024學年第二學期期末試卷
- 江西信息應用職業技術學院《BIM基礎》2023-2024學年第二學期期末試卷
- 揚州環境資源職業技術學院《高級管理學》2023-2024學年第二學期期末試卷
- 江西航空職業技術學院《外國建筑史(Ⅰ)》2023-2024學年第二學期期末試卷
- 陽光學院《古樹導論》2023-2024學年第二學期期末試卷
- 江西省湖口縣第二中學2024-2025學年高三防疫期間“停課不停學”網上周考(三)物理試題含解析
- 2024年無人駕駛行業培訓資料 - 無人駕駛技術的商業應用與法規管理
- 整本書《中國古代寓言故事》閱讀教學設計
- 《太陽照在桑干河上》農村革命與現實生活的沖突
- 電容損耗計算公式(一)
- 商標分類(1-45類小類明細)
- 跨境電商與數字貿易合作
- 大氣污染控制工程教案-08-09
- 數字城管信息采集外包服務投標方案(技術方案)
- 家庭豬場養殖模式
- 重慶大學附屬腫瘤醫院麻醉科新增術中放療場所環評報告
- 消費者起訴狀模板范文
評論
0/150
提交評論