




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter12
SamplingandInterpolationofContinuousImages1.Samplingandinterpolation2.Computingspectra3.Aliasing4.Truncation5.ControllingaliasingerrorMainContents1.Samplingandinterpolation ——theShahfunction
Beforewecandescribequantitatively
theeffectsofsampling,wemustestablishamathematicalprocedureformodelingtheprocess.Todothis,weuseaspecialfunctioncalledtheShahfunctionwhichisasfollows:
Theinfiniteimpulsetrain,Ⅲ(x),isaseriesofunit-amplitudeimpulsesthatoccuratunitspacingalongthex-axis.TransformationofShahfunction:xxthesimilaritytheoremTransformationofShahfunction:TheShahfunctionanditsspectrumSinceIII(x)isaninfinitetrainofequallyspacedimpulses,italsoexhibitsthisbehaviorunderstretchingandcompression.1.Samplingandinterpolation
——samplingwiththeShahfunction
Supposeafunctionf(x)isbandlimitedatafrequencys0;thatis,
ImpulseResponseofaLinearSystem
Noticethat:g(t)Ifwesamplef(x)atequalintervalsτ,wedestroyf(x)everywhereexpectatx=nτ.Thesampledfunctionisillustratedinthefollowingfigure.ThesampledfunctionanditsfrequencydomainSamplingbyShah
functionτIII(t/τ)FrequencyDomainF(s)-s0s0-1/τ-s0s01/τG(s)=τIII(τs)*F(s)Timedomain原始信號及其頻譜采樣后信號及其頻譜ReconstructionSamplingtheoremFreq.domain
Applyingtheconvolutiontheorem,productintimedomainequalsconvolutioninfrequencydomain,thatis
III(x/τ)f(x)=τIII(τs)*F(s)
Theconvolutionofafunctionwithanimpulseproducesmerelyacopyofthatfunction,thatis,F(x)isreplicatedevery1/τalongthes-axis.
Samplingmakefinitebandwidthfunctiontobethefunctionwithspectrumfromminusinfinitytoinfinity.
Anyfunctionsampledatequalintervalsτhasaspectrumthatisperiodicwithfrequency1/τ.
1.Samplingandinterpolation ——thesamplingtheoremNowthatthefunctionf(x)
hasbeensampled,theinformationbetweensamplepointshasbeenlost.Sorecovertheoriginalfunctionisquiteimportant.
Twonecessaryconditionsoftransform:(1)retaintheonethatiscenteredupontheorigin(2)eliminateallthereplicasofF(s)
Recoverprocedure:
Wehaverecoveredthespectrumoff(x)fromthespectrumofthesampledsignalg(x)Weconvolvethesampledfunctiong(x)withaninterpolatingfunctionoftheform
sinc(x)=sin(x)/xtogetf(x)Themethodaboveshowsthatwecanindeedrecoverf(x)fromg(x).Thisdevelopmentissubjecttotworestrictions.
(1)f(x)mustbebandlimitedatso(2)therelationshipbetweenτandthebandlimitsomustsatisfySamplingtheorem:afunctionsampledatuniformspacingτcanbecompletelyrecoveredfromthesamplevalues,providedthatSoisthebandlimit1.Samplingandinterpolation ——functioninterpolationConvolvingg(x)withtheinterpolatingfunctionsin(x)/xineffectreplicatesanarrowsin(x)/x
ateachsamplepoint
guaranteesthatthesummationoftheoverlappingsin(x)/xfunctionswilladduptoreproducetheoriginalfunctionexactly.
Thefigureaboveillustratesthecasewheres1=1/2,but
allowsconsiderablearbitrarinessinthefrequencyofthesin(x)/xfunctionifthereciprocalofthesamplingintervalisconsiderablylargerthanthebandlimit,so.1.Samplingandinterpolation ——undersamplingandaliasing
Wemustsampleafunctionfinelyifwewantittobetotallyrecoveredfromitssamplevalues.Supposethesamplinginterval>1/2s0.ThenwhenF(s)isreplicatedtoformG(s),theindividualreplicaswilloverlapandsumtogether.
Ifwetheninterpolate,usingthefunctionintheprecedingequation,wewillnotrecoverf(x)exactly,becauseTheeffectofoverlapofthespectral:
Energyabovethefrequencys1isfoldedbackbelows1andaddedtothespectrum.Thisfoldingbackofenergyiscalledaliasing,andthedifferencebetweenf(x)andtheinterpolatedfunctionisduetoaliasingerror.2.Computingspectra
——spectrainthetimedomainSupposeasignalisrepresentedbyNsamplepointsseparatedbyconstantspacing.Thetotalintervaloverwhichthesignalissampledis
Computingspectra2.Computingspectra
——spectrainthefrequencydomainSinceisasampledfunctionwithsamplespacing,itsspectrumisperiodicwithperiod.ItiscommonpracticetospreadtheNsamplepointsevenlyacrossthatcycleofwhichiscenteredupontheorigin.ThismeansthatwecomputepointononlyovertherangeIfwespreadNequallyspacedsamplepointsoveronecycleof,thenisthesamplespacinginthefrequencydomain.Thebestchoiceforcomputingthespectrumofistocomputepointswithequalspacing,givenbytheprecedingequation.
Thesamplingtheoremindicatesthatajudiciouschoiceofsamplespacingcancompletelyavoidaliasingwhenoneissamplingabandlimitedfunction.Ifweareforcedtoworkwithinherentlynon-bandlimitedfunctions,thenwearecondemnedtoworkintheshadowofunavoidablealiasing.
Sincetheconvolutionoftwofunctionscanbenonarrowerthaneither,weconcludethatthespectrumofthetruncatedfunctionisofinfiniteextentinthefrequencydomain.Thus,truncationdestroysbandlimitednessandcondemnsdigitalprocessingtoproducingaliasinginallcases.3.Aliasing ——theunavoidabilityofaliasing3.Aliasing
——boundingaliasingerrorThefollowingfigureillustrateshowdosealinearsystemcomputethespectrumofitsresponsetoarectangularpulse.
Iff(t)istheinputpulseandg(t)isthesystem’soutput,thetransferfunctionish(t)LinearsystemidentificationTheinputsignalanditsspectrumSinceF(S)extendsfromminustoplusinfinity,nochoiceofwillcompletelyavoidaliasing.SinceF(0)isunityandtheenvelopeis,wecanwriteanupperboundonaliasingas3.Aliasing
——spectralresolutionF(s)hassinusoidalvariationsoffrequencya.LetdenotebyMthenumberofsamplepointspercycleofF(s)onthecomputedspectrumanduseitasameasureofspectralresolution.Theperiodofthesinusoidalvariationis1/a,then
WemayhaveasmanysamplepointspercycleofF(s)asdesiredifwemakethesamplingperiodTlargecomparedtothehalf-widthofthepulse.4.Truncation
——computingthespectrumofanedgeThissamplecalculatesthespectrumofastepfunction’sedge.ThestepfunctionanditsspectrumInordertocalculatethespectrumofthefunctionsign(x),wemustfirsttruncatetoafiniteduration.IfwetruncatethefunctionwithatruncationwindowofwidthT,theresultingfunctionis:ThespectrumoftruncatedstepfunctionThetruncatedstepfunctionSincethetruncatedfunctionisanoddpairofrectangularpulses:Theprecedingequationproducesthespectrumofthetruncatededgefunction:thatis:ThespectrumofthetruncatedsignalisasinusoidenclosedunderanenvelopethatistwicethedesiredspectrumF(s)ThesamplepointsonwillbecomputedatdiscretefrequenciesThecosinetermtakesonthevalue±1foreveniand-1foroddI,soioddievenThecomputedspectrumofthestepfunction4.Truncation
——truncationeffectsNoticethecuriouseffectoftruncationintheprecedingexamples:
Theodd-numberedpointswerecorrect,whiletheeven-numberedpointswerezero.Thetruncationredistributedtheenergyamongtheoddandevenpoints.
Onecouldobtaintheexpectedresultbyconvolvingwithanarrow,triangularlocal-averagingfilter.Thiswouldavoidthediscontinuitiesatandpreventtruncationerror.5.Controllingaliasingerror
——theantialiasingfilterTherearetwoparametersthatwecanusetopreventaliasingfromcorruptingtheinformationthatisofinterestintheimage:thesamplingapertureandthesamplespacing.Thefigurebelowillustrateshowonecanreducealiasing:thewidthoftheapertureistwicethesamplespacing.Thisplacesthefirstzero-crossingofitstransferfunctionat.Thus,energyatfrequenciesabovewillbeattenuatedseverely.
ReductionofaliasingwitharectangularapertureThetriangularsamplingapertureusedinthefigurebelowisfoursamplepointswideandalsohasitszero-crossingat.Sinceitsspectrumdiesoutwithfrequencymorerapidlythanthatoftherectangularpulse,itismoreeffectiveagainstaliasing.Liketherectangularpulse,however,itreducestheenergyinbelow.Reductionofaliasingwithatriangularaperture5.Controllingaliasingerror
——oversampling
Ifwemakethesamplespacingsmall,wecanplacefNfarbeyondthefrequenciesofinterestinthespectrum.Then,whenaliasingcontaminatestheupperpartofthespectrum,itwillhavelittleornoeffectuponthedataofinterest.Thetruncationwindowshouldbelarge
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聚氨酯管材及管件購銷合同協議
- 二手家具購買合同協議
- 股權回購合同法律效力分析
- 權益合同協議書模板
- 林州建筑職業技術學院《第二外語英語》2023-2024學年第二學期期末試卷
- 供應鏈合作協議書
- 南京醫科大學《康復醫學基礎》2023-2024學年第二學期期末試卷
- 天津市達標名校2025屆初三下學期第三次(4月)月考數學試題含解析
- 燕京理工學院《現代推銷學實驗》2023-2024學年第一學期期末試卷
- 防火安全產品供貨合同格式
- 街道優生優育進萬家活動實施方案
- 關于助航燈光回路絕緣下降原因分析
- 《音樂療法》教學課件
- 小區室外雨、污水排水管道施工方案
- 工廠5S檢查評分評價基準表(全)
- 江水源熱泵應用杭州奧體主體育場案例分析
- 部編版三年級語文下冊期中檢測卷課件
- (完整版)供應商審核表
- 說專業(市場營銷專業)課件
- 火電廠工藝流程圖
- 以“政府績效與公眾信任”為主題撰寫一篇小論文6篇
評論
0/150
提交評論