




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
DP
PaperSeries24-E-084
RIETIDiscussion
MacroeconomicImpactofArtificialIntelligenceonProductivity:Anestimatefromasurvey
MORIKAWA,Masayuki
RIETI
ResearchInstituteofEconomy,Trade&Industry,IAA
TheResearchInstituteofEconomy,TradeandIndustry
https://www.rieti.go.jp/en/
1
RIETIDiscussionPaperSeries24-E-084
December2024
MacroeconomicImpactofArtificialIntelligenceonProductivity:Anestimate
fromasurvey
*
MasayukiMorikawa(RIETI)
Abstract
BasedonasurveyofJapaneseworkers,thisstudydocumentsthecharacteristicsofworkerswhouseartificialintelligence(AI)intheirjobsandestimatestheeffectsofthisnewgeneral-purposetechnologyonmacroeconomicproductivity.Theresultsindicate,first,8.3%ofworkersusedAIintheirjobsin2024,whichisapproximately1.5timesthanin2023.Second,moreeducatedandhigh-wageworkerstendtouseAI,suggestingthatitsdiffusionmayincreaselabormarketinequality.Third,theuseofAIisestimatedtohaveincreasedlaborproductivityinthemacroeconomyby0.5–0.6%.Fourth,nearly30%ofworkersexpecttouseAIfortheirjobsinthefuture,suggestingthatitsmacroeconomiceffectswillincrease.However,theproductivityeffectofAIforthosewhorecentlystartedusingitisrelativelysmall,suggestingadiminishingproductivityimpactofAI.
Keywords:artificialintelligence,productivity
JELClassification:D24,J24,J31,O33,O47
RIETIDiscussionPapersSeriesaimsatwidelydisseminatingresearchresultsintheformofprofessionalpapers,therebystimulatinglivelydiscussion.Theviewsexpressedinthepapersaresolelythoseoftheauthor(s),anddonotpresentthoseoftheResearchInstituteofEconomy,TradeandIndustry.
*IwouldliketothankSeiichiroInoue,ArataIto,YukiHashimoto,EiichiTomiuraandtheseminarparticipantsatRIETIfortheirvaluablecommentsandsuggestions.ThisresearchissupportedbytheJSPSGrants-in-AidforScientificResearch(23K17548,23K20606).
2
MacroeconomicImpactofArtificialIntelligenceonProductivity:Anestimate
fromasurvey
1.Introduction
Thebusinessuseofartificialintelligence(AI),includinggenerativeAI,isspreadingrapidlyandexpectedtosubstantiallyincreasemacroeconomicproductivity.Amongautomationtechnologies,manystudieshavequantifiedtheproductivityimpactofindustrialrobots(e.g.,GraetzandMichaels,2018;Kromannetal.,2020;Cetteetal.,2021;Dauthetal.,2021)becausedataontheiruseareavailablefromtheInternationalFederationofRobotics.DataontheuseofindustrialrobotsinJapanareavailablefromtheJapanRobotAssociation,andstudieshavebeenconductedusingthesedata(e.g.,Dekle,2020;Adachietal.,2024).However,thequantitativeimpactofAIonproductivityisnotyetwellunderstood,mainlybecauseofthelackofstatisticaldataontheuseofAI.
Recently,severalstudieshavereportedresultsfromrandomizedexperimentsonspecifictasks,showingthatAIhasasubstantialpositiveeffectonproductivity(e.g.,Kanazawaetal.,2022;Brynjolfssonetal.,2023;NoyandZhang,2023;Pengetal.,2023).Thesestudiesprovidevaluablecontributions,astheyrevealthecausaleffectsofAIonproductivity.However,themacroeconomiceffectsareimpossibletoinferfromtheseresultsbecausetheanalysiscoversnarrowlydefinedtasks,suchastaxidriving,customersupport,writingtasks,andsoftwareprogramming.
Acemoglu(2024)estimatesthemedium-termeffectofAIonproductivityoverthenext10yearsasthepercentageoftasksaffectedbyAImultipliedbytask-levelcostsavingsbasedonexistingtask-levelstudies.Accordingtohisstudy,themacroeconomicimpactofAIisnon-negligiblebutsmall,withacumulativetotalfactorproductivity(TFP)increaseoflessthan0.7%over10years.However,heexpressesreservations,inthatwhichtaskswillbeautomatedandwhatthecostsavingswillbearelargelyuncertain.
Bicketal.(2024)applysurveydatatoshowgenerativeAIusebyUSworkersandestimatethatgenerativeAIincreaseslaborproductivityby0.125–0.875percentagepoints.However,thisfigureisbasedontheassumptionthatthetask-levelproductivityeffectis25%,whichisthemedianoffiverecentstudies.BasedonaDanishsurveyofworkersin11occupationswithhighexposuretogenerativeAI(e.g.,softwaredevelopersandmarketingprofessionals),HumlumandVestergaard(2024)reportthat32%areusingChatGPT,arepresentativegenerativeAIprogram,
3
andthattheyestimatethatChatGPThalvestheirworkinghoursforone-thirdoftheirtasks,onaverage.ThesefindingsindicatethatChatGPTincreasestheaggregate-levellaborproductivityoftheseoccupationsbyapproximately5%.However,thiscannotbegeneralizedtotheentirelabormarketbecausethereportedfiguresareforspecificoccupationswithhighAIexposure.
Againstthisbackground,thisstudyusesasurveyofJapaneseworkersconductedinOctober2024toidentifythenumberandtypeofworkersusingAIintheirjobsandestimatestheimpactofthisnewgeneral-purposetechnologyonmacroeconomicproductivity.Althoughthisstudyemploysanextremelysimpleapproach,itcancapturethemacroeconomiceffectsofAIbecauseitcoverstheentireworkforceratherthanspecificoccupations.AlthoughtheproductivityeffectsarebasedonthesubjectiveevaluationsofworkerswhouseAI,thismethodhastheadvantageofavoidingendogeneityconcerns,unlike,forexample,aproductionfunctionapproach,becausethesurveyasksAIuserstomakecomparisonswithsituationsinwhichAIisnotused.Furthermore,becausethisstudyusestwo-yearpaneldata,wecancompareworkerswhobeganusingAIinthepastyearwiththosewhohavebeenusingAIlonger.
Themainfindingsaresummarizedasfollows.First,approximately8%ofworkerscurrentlyuseAIintheirjobs,andthisnumberisrapidlyincreasing.Second,moreeducatedandhigh-wageworkerstendtouseAI,whichmayincreaseinequalityinthelabormarket.Third,weestimatethatAIusehasincreasedmacroeconomiclaborproductivityby0.5–0.6%.Fourth,nearly30%oftherespondentsexpecttouseAIintheirjobsinthefuture,suggestingthatthemacroeconomiceffectsofAIwilllikelyincrease.However,theproductivityeffectsofthosewhohaverecentlybegunusingAIarerelativelysmall,suggestingthepossibilitythatAI’simpactonproductivitywillgraduallydiminish.
Theremainderofthispaperisorganizedasfollows.Section2describestheworkersurveyandanalysismethodusedinthisstudy.Section3reportsourresultsonthemacroeconomicimpactofAIandthecharacteristicsofworkerswhouseAIfortheirjobs.Section4summarizesthefindingsanddiscussestheirimplications.
2.Outlineofthesurvey
Thedatawereretrievedfromthe“SurveyofLifeandConsumptionundertheChangingEconomicStructure”designedbytheauthorandadministeredbyRakutenInsight,Inc.inOctober
2024.ThesurveytargetedrespondentsfromasurveyconductedinSeptember2023(Morikawa,2024).The2023surveywasconductedwithworkersaged20yearsandolderfromasamplepool
4
ofmorethan2millionregisteredindividuals.Thestudysamplewasselectedsuchthatthegenderandagecompositionmatchedthatofthe2022EmploymentStatusSurvey(MinistryofInternalAffairsandCommunications),whichisanofficialstatisticalsurveyconductedinJapaneveryfiveyears.Thus,thesampleisrepresentativeoftheentireJapaneseworkforce.The2023surveyhad13,150respondents.Ofthese,12,763stillregisteredatthetimeofthe2024surveyweresentquestionnaires,and8,633responded.Datafrom8,269oftheserespondents,excludingthosenotworkingasofthe2024survey,areusedintheanalysis.ThegenderandagecompositionoftherespondentsisshowninappendixTableA1.
Themainsurveyitemsusedinthisstudyassessthefollowing:(1)theuseofAIatwork,(2)percentageoftasksperformedusingAI,and(3)effectofAIuseonworkefficiency.Inaddition,thesurveyincludesinformationontherespondents’gender,age,educationalbackground,industryinwhichtheywork(44categoriesaggregatedinto14categories),occupation(13categoriessuchasmanagerial,professional/technical,clerical,andsalespositions),typeofemployment(10categoriessuchasfull-timeregularemployment,part-timeemployment,andself-employment),weeklyworkinghours(12categories),andwages(18categoriesdenotingannualearningsfromwork),whichareusedintheanalysis.
1
ThespecificquestionregardingtheuseofAIatworkis“WewouldliketoaskyouaboutyouruseofArtificialIntelligence(AI)includinggenerativeAI.”Thethreechoicesare:1)“IcurrentlyuseAIatwork,”2)“IdonotcurrentlyuseAIatwork,butIthinkIwillinthefuture,”and3)“IdonotuseAIatworkanddonotthinkIwillinthefuture.”
RespondentswhoselectthefirstresponseareaskedaboutthepercentageoftheirworktasksthatusedAIandtheeffectofAIontheirworkefficiency.ThequestionregardingthepercentageoftasksperformedusingAIis“WhatpercentageofyouroveralltasksisperformedusingAI?”Answersareprovidedasspecificnumbers(%).
2
ThequestionabouttheefficiencygainsfromAIis“HowmuchmoreefficientdoyoufeeltheuseofAIinyourtaskscomparedtowithoutusingAI?”Thisquestionisalsoansweredintheformofaspecificnumber(%).Thelowerboundoftheresponseissetat0%(iftherespondentbelievesthatAIusehasnothingtodowithworkefficiency),andtheupperboundissetat100%toavoidextremeresponses,althoughinsomecases,efficiencymaybeasmuchastwiceashighwithAIthanwithout.However,becauseonly
1Theweeklyworkinghoursaredividedinto12categories:lessthan15hours,15–19hours,20–
21hours,22–29hours,30–34hours,35–42hours,43–45hours,46–48hours,49–59hours,60–
64hours,65–74hours,and75hoursormore.Workers’annualincomeisdividedinto18categories:lessthanJPY500thousand,JPY500to990thousand,JPY1,000to1,490thousand,...,JPY15,000to1,749thousand,JPY1,750to1,999thousand,andmorethanJPY20,000thousand.
2Thelowerandupperboundsoftheresponsearesetat1%and100%,respectively.
5
asmallnumberofAIusers(1.7%)responded100%,thepossibledownwardbiasarisingfromsettingtheupperboundislimited.
Basedontheanswerstothesequestions,thepercentageofworkerswhouseAIfortheirwork(AI_User),percentageoftasksusingAI(AI_Taskshare),andefficiencygains(AI_Efficiency)aretabulatedbygender,age,education,andotherworkercharacteristics.Theworker-levelproductivityeffect(AI_Productivity)iscalculatedforAIusersasAI_Taskshare*AI_Efficiency.Forexample,ifaworkerusesAIfor30%oftheirtasksandtheefficiencyeffectofAIis20%,theoverallproductivityoftheirworkis6%higherthanwhentheydonotuseAI.MultiplyingthemeanofthisfigurebythepercentageofAIusersindicatesthemacroeconomicproductivityeffect.
However,AIusersmaybemorelikelythannon-userstohavelongerworkinghours,suchasfull-timeemployees,andmaybemorehighlyeducatedandearnhigherwages.Therefore,weperformanaggregationweightedby(1)workinghoursand(2)annualearnings.Whenworkinghoursareusedasweights,macroeconomiceffectsareestimatedonalaborinputbasis,andwhenannualearningsareusedasweights,macroeconomiceffectsareestimatedclosertoavalue-addedbasis.
WhenestimatingtheeffectsofAIuseonproductivity,forexample,anapproachtoestimatingaproductionfunction,selectionbiasresultsinaseriousprobleminwhichfirmsandworkerswithhigherproductivitytendtouseAImorethanthosewithlowerproductivity.Althoughtheestimatedproductivityeffectsinthisstudydependonworkers’subjectiveevaluations,meaningthatmeasurementerrorsareinevitable,ourapproachhastheadvantageofavoidingsuchendogeneitybiasbecausethesurveyasksAIusersaboutefficiencygainsincomparisontosituationsinwhichAIisnotused.
3.Results
3.1.UseofAIandProductivityEffects
Table1summarizestheaggregationresultsofthemainsurveyquestions.Oftherespondents,8.3%useAIatwork(AI_User).Inthe2023surveyconductedayearearlier,thecorrespondingfigurewas5.8%(5.3%whenlimitingthesampletothosewhoalsorespondedtothe2024survey).Therefore,thenumberofworkerswhouseAIatworkisapproximately1.5timeshigherthanitwasinthepreviousyear(Morikawa,2024).
3
Thepercentageofrespondentswhochoose“Ido
3Thethreeresponsechoicesinthe2023surveyare(1)usingAIatwork,(2)usingAIbutnotat
6
notcurrentlyuseAIatwork,butIthinkIwillinthefuture,”is27.8%,suggestingthattheuseofAIinworkwillcontinuetoincrease.
Table1.UseofAIanditseffect(%)
Mean
Std.Dev.
N
A.AI_User
8.32
-
8,269
B.AI_Taskshare
15.1
16.8
688
C.AI_Efficiency
25.9
22.9
688
Note:RowsBandCshowthefiguresfortherespondentswhouseAIintheirwork.
ThemeanpercentageoftasksthatuseAI(AI_Taskshare)amongthosewhouseAIfortheirjobsis15.1%,althoughtheindividualdifferencesarelarge,withastandarddeviationof16.8%.Therefore,evenwhenAIisusedforwork,thepercentageoftasksthatdonotuseAIismuchhigherthanthatoftasksthatdo.
ThesubjectiveeffectofAIuseonworkefficiency(AI_Efficiency)alsovarieswidelyamongindividualworkers;however,themeanvalueis25.9%(standarddeviationis22.9%).
4
AswedonothaveinformationonthecostofAI(capitalinput),thesefiguresshouldbeinterpretedastheeffectsonlaborproductivity,notTFP.AlthoughtheirstudyislimitedtotheeffectsofgenerativeAI,Bicketal.(2024)assumea25%productivityeffectofgenerativeAIusewhenconductingtheiranalysis.Thefigureinourstudyisnotsimplycomparablewiththeirsbutisalmostidentical.ApositivecorrelationisobservedbetweenAI_EfficiencyandAI_Taskshare,withthosewhoevaluatetheefficiencygainsofAIreportingahigherpercentageoftasksusingAI.Quantitatively,a1percentagepointincreaseinAI_Efficiencyisassociatedwitha0.3percentagepointincreaseinAI_Taskshare.
ThemeanproductivityeffectofAIattheworkerlevel(AI_Productivity)is5.6%,meaningthatworkerswhouseAIfortheirjobsare5.6%moreproductivethanthosewhodonot.Themacroeconomicproductivityeffect,calculatedbymultiplyingthisfigurebythepercentageofAIusers,is+0.46%(column(1)ofTable2).However,thisfigureisbasedonthenumberofworkersanddoesnotconsiderthedifferencesinworkinghoursandwages.Whentheproductivityeffectiscalculatedusingworkinghoursastheweight,itis+0.50%(column(2)ofTable2),andwhenannualearningsareusedastheweight,itis+0.58%(column(3)ofthe
table).5
Thisdifference
work,and(3)notusingAI.
4Thesamequestionwasaskedinthe2023survey,andthemeanwas21.8%(21.0%forapanelsample).Thus,thefigurefor2024issomewhathigher.
5Basedontheresultsbyindustry,aweightedaverageusingtheratioofthenumberofworkersbyindustryintheEmploymentStatusSurveyof2022yieldsslightlylowerproductivityeffects:unweighted0.42%,weightedbyworkinghours0.46%,andweightedbyannualearnings0.50%.
7
mainlyreflectsthatthosewithlongerworkinghoursandthosewithhigherannualearningsaremorelikelytouseAI(extensivemargin),whereasthedifferencesintheintensivemargin,proportionoftasksusingAI(AI_Taskshare),andproductivityeffectofAIuse(AI_Efficiency)arerelativelysmall.Intermsoftheeffectonvalueaddedatthemacrolevel,annualearningsareappropriatetouseastheweight.Therefore,atthispoint,ourpreferredestimateisa0.5–0.6%boosttolaborproductivityatthemacrolevelcomparedtothecasewithoutAI.
6
Table2presentstheresultsbyindustry,education,andannualearnings,whicharediscussedlaterinthispaper.
Table2.MacroeconomicproductivityeffectsofAI(%)
(2)Hours(3)Annualearnings
(1)Unweighted
weightedweighted
Allindustries
0.46
0.50
0.58
Construction
0.30
0.33
0.31
Manufacturing(machinary)
0.66
0.70
0.82
Manufacturing(others)
0.36
0.37
0.49
Utilities
1.41
0.88
0.88
Informationandcommunications
1.54
1.76
1.60
Transportation
0.57
0.69
0.70
Wholesale
0.14
0.16
0.18
Retail
0.55
0.62
0.62
Bankingandfinance
0.83
0.90
0.94
Services
0.30
0.32
0.40
Education
0.30
0.25
0.38
Healthcare
0.30
0.26
0.41
Publicservices
0.31
0.30
0.28
Otherindustries
0.22
0.28
0.31
Highschoolorless
0.21
0.35
0.39
Vocationalschool
0.28
0.43
0.46
Juniorcollege
0.18
0.26
0.34
University
0.38
0.58
0.58
Graduateschool
0.70
0.86
1.02
Lessthan5,000thousand
0.25
0.39
0.37
5,000-9,999thousand
0.45
0.64
0.63
10millionorhigher
0.56
0.72
0.75
Note:Productivityeffectsincolumn(1)arecalculatedasAI_User*AI_Taskshare*AI_Efficiency.Figuresincolumns(2)and(3)arecalculatedusingworkinghoursandannualearningsasweights,respectively.
Therefore,respondentstooursurveytendtoworkinindustrieswithhighlevelsofAIuse.
6Thelaborproductivityeffectestimatedhereisapproximately0.3%whenconvertedtoTFPusingthelaborsharefigure(0.535)usedbyAcemoglu(2024).
8
The2024surveywasconductedwithrespondentswhoalsoparticipatedinthe2023survey,andthe2023surveyalsoaskedaboutAIuseatwork.Therefore,thosewhorecentlystartedusingAIduringthepastyearcanbedisaggregatedfromthosewhohavecontinuedtouseAI.Table3summarizesthecomparisonbetweenthesetwocategoriesofAIusers.BoththepercentageoftasksusingAI(AI_Taskshare)andtheeffectonworkefficiency(AI_Efficiency)aresignificantlylowerforthosewhorecentlystartedusingAIthanforthosewhohaveuseditcontinuously.Thus,theeffectofAIuseonoverallworkproductivitydifferssignificantly(AI_Productivity).AI_ProductivityforcontinuousandnewAIusersis7.9%and4.4%,respectively.ThisresultsuggeststhatthediffusionofAIstartedwithjobsforwhichitseffectislargeandgraduallyspreadtojobsforwhichitseffectissmall.
7
Ifthesetrendscontinue,theadditionalcontributionofAItomacroeconomicproductivitymaydiminishgraduallyasthenumberofAIusersincreases.
Table3.ComparisonofnewandcontinuousAIusers(%)
NewAIusers
ContinuousAIusers
Diff.
AI_Taskshare
13.73
17.78
-4.05
***
AI_Efficiency
23.60
30.16
-6.56
***
AI_Productivity
4.37
7.85
-3.48
***
N
451
237
Note:***:p<0.01.NewAIusersarethosewhostartedusingAIinthepastyear.
InadditiontothosewhocurrentlyuseAIintheirjobs,27.8%oftherespondentsansweredthattheyexpecttostartusingAIinthefuture.AssumingthatthepercentageofworkthatusesAIandtheeffectonworkefficiencyassociatedwithAIusearethesameasthoseofcurrentAIusers,theadditionalmacroeconomicproductivityeffectofthesepotentialuserswouldbeapproximatelyfourtimesgreater,orapproximately+2%,comparedtothecasewithoutAI.
8
However,asnotedabove,thepercentageoftasksthatuseAIandtheeffectofAIonworkefficiencymaybecomesmallercomparedtotasksforwhichAIwasusedearlier.However,iftheratiooftasksthatuseAIincreasesamongworkerswhocontinuouslyuseAIfortheirjobs,theoverallproductivityeffectmayincrease.
7SomeworkersusedAIfortheirjobsatthetimeofthe2023surveybutnotin2024(“quitter”).TheaverageeffectofAIonworkefficiencyfortheseindividualsin2023is18.7%,whichislowerthanthefigureforthosewhocontinuedtouseAIin2024(22.9%),althoughthedifferenceisquantitativelysmall.
8TheestimatedeffectonTFP,consideringthelaborshare,is+1.1%,whichislargerthanthefigurereportedinAcemoglu(2024).
9
3.2.CharacteristicsofWorkersWhoUseAIfortheirJobs
Thecalculationresults,disaggregatedbyworkercharacteristics,arereportedinappendixTableA2.WorkerswithhigherratesofAIusearegenerallymale,intheir20sand30s,andhighlyeducated,especiallythosewithadvanceddegrees(seecolumn(1)ofthetable).
9
Byindustry,theinformationandcommunications,manufacturing(machinery),andfinance/insuranceindustrieshavehighratesofAIuse.Byoccupation,management,sales,andprofessional/technicaloccupationshavehighratesofAIuse.Bytypeofemployment,companyexecutivesandfull-timeemployeeshavehighratesofAIuse.High-incomeworkers(annualearningsof10millionyenormore)havehighratesofAIuse.
10
Column(1)ofTable4showstheresultsofasimpleprobitestimationthatexplainstheuseofAIatworkaccordingtoworkercharacteristics.Annualearningsarelog-transformedusingthemedianofthe18categories.ThelowestcategoryistreatedasJPY250thousandandthehighestcategoryistreatedasJPY22.5million.
11
Thecoefficientforfemaleisinsignificant,indicatingnogenderdifferencesinAIusewhencontrollingforindustry,occupation,typeofemployment,andothercontrolvariables.Youngerworkersintheir20sand30s,thosewithhighereducation(collegeandgraduatedegrees),andthosewithhigherannualearningsfromworkhaveahigherprobabilityofusingAI.
12
Column(2)ofTable4showstheresultsofthesameestimationusingdatafromthe2023survey.Therelationshipsbetweenage,education,andannualincomeandtheprobabilityofAIusearethesameasthosefoundinthe2024survey.Morikawa(2017),inanearlystudythatanalyzedtherelationshipbetweenAIadoptionandemployeeeducationusingJapanesefirm-levelsurveydata,indicatesacomplementaritybetweenAIandworkereducation.Dracaetal.(2024)demonstratesthecomplementaritybetweenmachinelearning/AIandskills(collegegraduatesandSTEMoccupations)throughananalysisusingUKdata.Ourresultsareconsistentwiththoseof
9Amongtheeducationcategories,“juniorhighschoolandelementaryschoolgraduates”aremergedwith“highschoolgraduates”andlistedas“highschoolgraduatesandbelow.”Graduateschoolissurveyedseparatelyformaster’sanddoctoraldegrees,buttheyaremergedinto“graduateschool.”
10Inthesurvey,annualearningsfromworkareclassifiedinto18categoriesrangingfrom“lessthanJPY500thousandyen”to“morethan20millionyen,”buttoavoidcomplications,annualearningsareaggregatedintothreecategories.
11Theweeklyworkinghoursareusedasacontrolvariablebylog-transformingthemedianofthe12categories.
12Throughadifferentapproach,Eloundouetal.(2024)indicatethatindividualsearninghigherincomeshavegreaterexposuretolargelanguagemodels.
10
previousstudies.
Table4.WorkercharacteristicsandtheprobabilityofAIuse
(1)2024FY
dF/dxRobustSE
(2)2023FY
dF/dxRobustSE
Female
0.009
(0.007)
-0.007
(0.004)*
20s
0.062
(0.013)***
0.047
(0.008)***
30s
0.027
(0.009)***
0.026
(0.006)***
50s
-0.013
(0.007)*
-0.009
(0.005)*
60s
-0.020
(0.008)**
-0.010
(0.005)*
70orolder
-0.024
(0.016)
0.017
(0.014)
Vocationalschool
0.008
(0.012)
0.008
(0.007)
Juniorcollege
0.006
(0.012)
-0.005
(0.007)
University
0.034
(0.008)***
0.018
(0.005)***
Graduateschool
0.104
(0.020)***
0.046
(0.011)***
lnearnings
0.026
(0.005)***
0.019
(0.003)***
lnworkinghours
yes
yes
Industry
yes
yes
Occupation
Worktype
yes
yes
yes
yes
Observations
8,200
13,140
PseudoR2
0.1102
0.1120
Notes:Probitestimationswithrobuststandarderrorsareinparentheses.Thefiguresindicatemarginaleffects.***:p<0.01,**:p<0.05,*:p<0.10.Thereferencecategoriesaremale,age40s,andhighschooleducationorless.
ThepercentageoftasksthatuseAIandtheeffectofAIonworkefficiency(columns(2)and(3)ofappendixTableA2)havenoclearrelationshipwithworkercharacteristics.Inmanycases,thepercentageoftasksthatuseAIortheeffectofAIonworkefficiencyishigh,evenincategorieswithlowratesofAIuse.Thus,thedifferencesintheproductivityeffectsofAIbasedonworkercharacteristicsarelimited.However,aweakbutsystematicrelationshipexistsbetweeneducationandannualincomewiththeproductivityeffectsofAI.TheproductivityeffectofAItendstobesmallerforthosewithmoreeducationandhigherearnings.Therefore,althoughless-educatedandlow-wageworkersarenotablylesslikelytouseAIintheirjobs,theproductivityeffectsaresomewhatlargerwhentheydo.
Recentstudiesonspecifictasks(e.g.,Kanazawaetal.,2022;Brynjolfssonetal.,2023;NoyandZhang,2023)haveshownthatAIproductivityeffectsaregreaterforrelativelyless-skilledworkersinthesametask.Theabovefindingsaresimilartothoseinthesepreviousstudies.However,whenordinaryleastsquareestimationisperformedusinggender,age,education,industry,occupation,employmenttype,annualearnings,andhoursworkedperweekas
11
explanatoryvariables,thecoefficientsforeducationandannualearningsarestatisticallyinsignificant.Furthermore,thecoefficientsofindustry,occupation,andtypeofworkarelargelyinsignificant.Thus,theproductivityeffectofusingAIforworkisgenerallyunrelatedtoobservableworkercharacteristics.
Table2showsthemacroeconomicproductivityeffectsofAIdisaggregatedbyindustry,education,andannualearnings.Theindustry-levelproductivityeffects(weightedbyannualearnings)arelargefortheinformationandcommunications(1.60%)andfinance/insurance(0.94%)industriesandsmallforthewholesaleandconstructionindustries.ThedifferencesamongindustriesaremostlyduetodifferencesinthepercentageofAIusers(extensivemargin).Forexample,theinformationandcommunicationsindustrydoesnothaveparticularlyhighAI-usingtasksorefficiencyeffectsofAIuse.Byworkercharacteristics,aggregatedproductivityeffectsaregreaterforhighlyeducatedandhigh-incomeworkergroups.
4.Conclusion
UsingdatafromanoriginalsurveyofJapaneseworkers,thisstudyshowsthecharacteristicsofworkerswhouseAIintheirjobsandestimatesthemacroeconomiceffectsofAIonproductivity.Themainresultsareas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省蘇州市姑蘇區蘇州市草橋中學校2024-2025學年八年級(下)3月月考物理試題(含解析)
- 山東省臨沂市平邑縣、沂水縣2025屆高三第四次質量抽測物理試題含解析
- 江蘇護理職業學院《信號與系統仿真基礎實驗》2023-2024學年第二學期期末試卷
- 山東省萊山一中2024-2025學年高三下學期期中考試綜合試題含解析
- 四川省綿陽市重點中學2025屆高三下學期第一次模擬考試科英語試題試卷含解析
- 山西晉中理工學院《高級日語口譯》2023-2024學年第二學期期末試卷
- 新疆省哈密地區2024-2025學年四年級數學第二學期期末統考試題含解析
- 吉林省松原市乾安縣2025年五年級數學第二學期期末達標檢測試題含答案
- 江蘇省侯集高級中學2025屆高三第二次聯考數學試題理試題含解析
- 渭南市白水縣2024-2025學年小升初總復習數學精練含解析
- 環境行政法律責任2
- 高中畢業證英文模板(可編輯修改word版)
- 文件丟失怎么辦-完整精講版課件
- 幼兒園繪本故事:《我不知道我是誰》
- 樁基礎負摩阻計算表格(自動版)
- “1+X”證書制度試點職業技能等級證書全名錄
- 勞務派遣公司介紹ppt課件(PPT 35頁)
- 47頁數字孿生人臉識別軌跡分析電子圍欄智慧工地解決方案.pptx (2)
- 全國中小學美術教師基本功比賽理論知識測試試卷
- 呆滯物料的管理規定
- 喜來登酒店設施及面積分配表
評論
0/150
提交評論