




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
“認識自我優我成長”——八年級數學2025.4一、單選題(本題共10小題,每小題3分,共計30分)1.下列方程中,一定是一元二次方程的是()A.x2-2=0B.x2+y=1C.x?12.在平行四邊形ABCD中,∠B+∠D=110°,∠B的度數是()A.70°B.55°C.50°D.45°3.要檢驗一個四邊形畫框是否為矩形.可行的測量方法是()A.測量四邊形畫框的對角線是否相等B.測量四邊形畫框的三個角是否為90°C.測量四邊形畫框的四邊是否相等D.測量四邊形畫框的一組對邊是否平行且相等4.用配方法解方程x2+2x?1=0,下列配方正確的是(A.(x+1)2=1B.(x+1)2=2C.(x-1)2=2D.(x-1)2=15.在菱形ABCD中,∠ABC=80°,BA=BE,則∠BAE=()A.70°B.40°C.75°D.30°如圖,在?ABCD中,BF平分∠ABC,交AD于點F、CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC長為()A.8B.10C.12D.147.如圖,在矩形COED中,點D的坐標是(1,3),則CE的長是()A.3B.22C.10D.48.如圖,△ABC中,CE是中線,CD是角平分線,AF⊥CD交CD的延長線于點F,AC=9,BC=4,則EF的長為()A.92B.2C.59.正方形ABCD的邊長為4,點E為CD中點,連接BE,AF⊥BE于點F,連接DF,則DF長為()A.2B.3C.5D.410.如圖,已知正方形ABCD中AB=22,點E為對角線AC上一點,連接DE,過點E作EF⊥DE,交BC延長線于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.在下列結論中:①矩形DEFG是正方形;②2CE+CG=2AD;③CG平分∠DCF;④CE=CF.其中正確的結論有()A.①③B.②④C.①②③D.①②③④二、填空題(本題共5小題,每小題3分,共15分)11.若x=4是關于x的方程ax2?bx?8=0的解,12.關于x的一元二次方程ax2?2x+1=013.如圖,在平行四邊形ABCD中,點F是AD中點,連接CF并延長交BA的延長線于點E.若BC=2AE,∠E=31°,∠DAB的度數=.14.如圖,在菱形ABCD中,對角線AC,BD交于點O,過點A作AH⊥BC于點H,已知BO.15.如圖,菱形ABCD中,∠ABC=60°,AB=2,E、F分別是邊BC和對角線BD上的動點,且BE=DF,則AE+AF的最小值為.三、解答題(本題共8小題,共75分)16.用適當方法解方程:(本小題8分)(1)2x2-7x-6=0(2)x(x-2)=3x-617.(本小題8分)5月份學校要組織本年度“校長杯”籃球聯賽,賽制為單循環形式(每兩隊之間都賽一場),計劃安排21場比賽,請問參賽球隊有多少?18.(本小題8分)如圖,在?ABCD中,點E、F分別在AD、BC上,且AB=CF,EF、BD相交于點O。求證:OE=OF.19.(本小題9分)如圖,在四邊形ABCD中,AD∥BC,AD=BC,若點E、F分別是AD、BC的中點,且BD平分∠EBF(1)求證:四邊形EBFD是菱形(2)求∠ABD的度數.20.(本小題9分)如圖,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.若AB=2,AG=1,求EB的長21.(本小題8分)閱讀材料:材料1:法國數學家弗朗索瓦·韋達早在1615年在著作《論方程的識別與訂正》中就建立了方程根與系數的關系,提出一元二次方程。ax2+bx+c=0(a≠0,b2-4ac≥0)的兩根x1,x2有如下的關系(韋達定理):x1+x2=①,x1·x2=②.材料2:如果實數m,n滿足n-m-1=0,n2-n-1=0,且a≠n,則可利用根的定義構造一元二次方程x2-x-1=0,然后將m,n看作是此方程的兩個不相等實數根去解決相關問題。材料3:若x1,x2是一元二次方程ax2+bx+c=0a≠0請根據上述材料解答下面問題。(1)填空:①;②.(2)若實數a,b滿足:m2+3m-5=0,x2+3n-5=0(),則1m+(3)判斷方程2x2?63(4)若關于x的方程:2x2+bx+c=0(b,c是常數)是“差根方程”,求3b2-4c2的最大值.22.(本小題12分)定義:有一組鄰邊相等日對角互補的四邊形稱為“等補四邊形”,如圖1,在邊長為a的正方形ABCD中,E為邊CD上一動點(點E不與點C,D重合),AE交BD于點F,過點F作FH⊥AE交BC于點H.(1)試判斷四邊形AFHB是否為“等補四邊形”,并說明理由.(2)如圖2,連接EH,AH,求出△CEH的周長(用含a的字母表示).(3)當BH=123.(本小題13分)【問題初探】(1)如圖1,在△ABC中∠ACB=90°,AC=BC,點E在BC上(且不與點B,C重合),在△ABC的外部作△BED,使∠BED=90°,BE=DE,連接CD,過點A作AF∥CD,過點D作DF∥AC,DF交AF于點F,連接CF.根據以上操作,判斷:四邊形ACDF的形狀是,;【變換探究】(2)如圖2,將圖1中的△BED繞點B逆時針旋轉,使點E落在AB邊上,過點A作AF∥CD,過點D作DF∥AC,DF交AF于點F,連接CE,CF,若CE=4,求CF的長.勤奮小組通過第(1)問的解題經驗,嘗試連接EF,猜想△CEF為特殊的三角形;創思小組在勤奮小組的提示下,成功的證明出一對三角形全等,進而求得CF的長度.請結合兩個小組的解題思路,寫出解題過程.【遷移拓展】(3)博文小組在第(2)問的基礎上進行了如下創新,將圖1中的△BED繞點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論