




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽定遠高復學校2025年高三月考(三)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的部分圖象如圖所示,則()A.6 B.5 C.4 D.32.已知數列滿足:)若正整數使得成立,則()A.16 B.17 C.18 D.193.已知定義在上的函數,,,,則,,的大小關系為()A. B. C. D.4.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.5.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為,若低于60分的人數是18人,則該班的學生人數是()A.45 B.50 C.55 D.606.已知函數滿足,且,則不等式的解集為()A. B. C. D.7.執行如圖所示的程序框圖,則輸出的值為()A. B. C. D.8.已知是虛數單位,若,則()A. B.2 C. D.109.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.10.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.511.若的展開式中含有常數項,且的最小值為,則()A. B. C. D.12.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.若一組樣本數據7,9,,8,10的平均數為9,則該組樣本數據的方差為______.15.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標原點,若在第一象限,那么_______________.16.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.18.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.19.(12分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.20.(12分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.21.(12分)某企業質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業是否對該箱余下的所有零件進行檢驗?請說明理由.22.(10分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據正切函數的圖象求出A、B兩點的坐標,再求出向量的坐標,根據向量數量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.本題考查正切函數的圖象,平面向量數量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數圖象求出坐標,再根據向量數量積的坐標運算可得結果,屬于簡單題.2.B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.本題考查了數列的相關計算,意在考查學生的計算能力和對于數列公式方法的綜合應用.3.D【解析】
先判斷函數在時的單調性,可以判斷出函數是奇函數,利用奇函數的性質可以得到,比較三個數的大小,然后根據函數在時的單調性,比較出三個數的大小.【詳解】當時,,函數在時,是增函數.因為,所以函數是奇函數,所以有,因為,函數在時,是增函數,所以,故本題選D.本題考查了利用函數的單調性判斷函數值大小問題,判斷出函數的奇偶性、單調性是解題的關鍵.4.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.5.D【解析】
根據頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據樣本容量求出班級人數.【詳解】根據頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數)是60(人).故選:D.本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題6.B【解析】
構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.7.B【解析】
列出每一次循環,直到計數變量滿足退出循環.【詳解】第一次循環:;第二次循環:;第三次循環:,退出循環,輸出的為.故選:B.本題考查由程序框圖求輸出的結果,要注意在哪一步退出循環,是一道容易題.8.C【解析】
根據復數模的性質計算即可.【詳解】因為,所以,,故選:C本題主要考查了復數模的定義及復數模的性質,屬于容易題.9.B【解析】
根據焦距即可求得參數,再根據點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.10.C【解析】試題分析:由已知,-2a+i=1-bi,根據復數相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復數的代數運算,復數相等的充要條件,復數的模11.C【解析】展開式的通項為,因為展開式中含有常數項,所以,即為整數,故n的最小值為1.所以.故選C點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.12.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據平面向量模的定義先由坐標求得,再根據平面向量數量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數量積定義可得,根據平面向量模的求法可知,代入可得,解得,故答案為:1.本題考查了平面向量模的求法及簡單應用,平面向量數量積的定義及運算,屬于基礎題.14.1【解析】
根據題意,由平均數公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據題意,數據7,9,,8,10的平均數為9,則,解得:,則其方差.故答案為:1.本題考平均數、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎題.15.2【解析】
如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準線的垂線,垂足分別為M,N,過點B作于點E,設|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2本題主要考查直線和拋物線的位置關系,考查拋物線的定義,意在考查學生對這些知識的理解掌握水平.16.【解析】
化簡得到,,根據余弦定理和均值不等式得到,根據面積公式計算得到答案.【詳解】,即,,故.根據余弦定理:,即.當時等號成立,故.故答案為:.本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學生的綜合應用能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17..【解析】試題分析:,所以.試題解析:B.因為,所以.18.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.19.(1)證明見解析(2)【解析】
(1)解法一:作的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進而證得平面.解法二:建立空間直角坐標系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計算出二面角的余弦值.【詳解】(1)法一:作的中點,連接,.又為的中點,∴為的中位線,∴,又為的中點,∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長方體中,,,兩兩互相垂直,建立空間直角坐標系如圖所示,則,,,,,,,,,,,.(1)設平面的一個法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設平面的一個法向量為,則,令,則,.∴.同理可算得平面的一個法向量為∴,又由圖可知二面角的平面角為一個鈍角,故二面角的余弦值為.本小題考查線面的位置關系,空間向量與線面角,二面角等基礎知識,考查空間想象能力,推理論證能力,運算求解能力,數形結合思想,化歸與轉化思想.20.(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區間內恰有一個零點,轉化為在區間內恰有兩個零點,由(1)的結論對分類討論,根據單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數在區間上單調遞增時,在區間上恒成立.∴(其中),解得.當函數在區間上單調遞減時,在區間上恒成立,∴(其中),解得.綜上所述,實數的取值范圍是.(2).由,知在區間內恰有一個零點,設該零點為,則在區間內不單調.∴在區間內存在零點,同理在區間內存在零點.∴在區間內恰有兩個零點.由(1)易知,當時,在區間上單調遞增,故在區間內至多有一個零點,不合題意.當時,在區間上單調遞減,故在區間內至多有一個零點,不合題意,∴.令,得,∴函數在區間上單凋遞減,在區間上單調遞增.記的兩個零點為,∴,必有.由,得.∴又∵,∴.綜上所述,實數的取值范圍為.本題考查導數的綜合應用,涉及到函數的單調性、零點問題,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.21.(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】
(1)計算的頻率,并且與進行比較,判斷中位數落在的區間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據余下零件個數服從二項分布,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高血壓的診斷分級及護理
- 人教版新課標A必修2第四章 圓與方程4.3 空間直角坐標系教案
- 安全監管培訓
- 一年級品德與生活上冊 了解我們的學校教學設計2 北師大版
- 人教部編版八年級上冊網絡改變世界教案
- 人教部編版第二課 原始農耕生活教案設計
- 餐飲盤點流程培訓
- 2024中國移動河北公司春季校園招聘筆試參考題庫附帶答案詳解
- 利用周長解決問題(教學設計)-2024-2025學年數學三年級上冊人教版
- 工作票簽發人培訓
- 提高術前抗生素執行時間的正確率品管圈
- 辯字的字理課件
- 車工工藝與技能訓練(第3版)PPT完整全套教學課件
- 廠房租賃合同參考
- 高壓配電房點檢表
- 民法典之繼承編法律講座PPT
- 周圍神經損傷教案
- 基礎工程課程設計任務書及例題
- 道德與法治五年級下冊-5 建立良好的公共秩序(課件)
- 慢性支氣管炎臨床診療指南
- YY/T 0165-2016熱墊式治療儀
評論
0/150
提交評論