




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
計數原理、概率、隨機變量及其分布第十一章第2講排列與組合【考綱導學】1.理解排列組合的概念.2.能利用計數原理推導排列數公式、組合數公式.3.能利用排列組合知識解決簡單的實際問題.欄目導航01課前基礎診斷03課后感悟提升02課堂考點突破04配套訓練課前基礎診斷11.排列與組合的概念名稱定義排列從n個不同元素中取出m(m≤n)個元素按照____________排成一列組合合成一組一定的順序2.排列數與組合數(1)排列數的定義:從n個不同元素中取出m(m≤n)個元素的所有不同排列的個數叫做從n個不同元素中取出m個元素的排列數,用____表示.(2)組合數的定義:從n個不同元素中取出m(m≤n)個元素的______________的個數,叫做從n個不同元素中取出m個元素的組合數,用____表示.所有不同組合3.排列數、組合數的公式及性質n(n-1)(n-2)…(n-m+1)1n!2.用數字1,2,3,4,5組成的無重復數字的四位偶數的個數為(
)A.8
B.24
C.48
D.120【答案】C3.A,B,C,D,E五人并排站成一排,如果B必須在A的右邊(A、B可以不相鄰),那么不同的排法共有(
)A.24種 B.60種C.90種 D.120種【答案】B4.(2016年哈爾濱校級二模)有七名同學站成一排照畢業(yè)紀念照,其中甲必須站在正中間,并且乙、丙兩位同學要站在一起,則不同的站法有________種.【答案】192
求解排列與組合問題的三個注意點:(1)解排列與組合綜合題一般是先選后排,或充分利用元素的性質進行分類、分步,再利用兩個原理進行最后處理.(2)解受條件限制的組合題,通常用直接法(合理分類)和間接法(排除法)來解決.分類標準應統(tǒng)一,避免出現重復或遺漏.(3)對于選擇題要謹慎處理,注意等價答案的不同形式,處理這類選擇題可采用排除法分析選項,錯誤的答案都有重復或遺漏的問題.課堂考點突破2典型的排列問題
六人按下列要求站一橫排,分別有多少種不同的站法?(1)甲不站兩端;(2)甲、乙必須相鄰;(3)甲、乙不相鄰;(4)甲、乙按自左至右順序排隊(可以不相鄰);(5)甲、乙站在兩端.【規(guī)律方法】(1)對于有限制條件的排列問題,分析問題時有位置分析法、元素分析法,在實際進行排列時一般采用特殊元素優(yōu)先原則,即先安排有限制條件的元素或有限制條件的位置,對于分類過多的問題可以采用間接法.(2)對相鄰問題采用捆綁法、不相鄰問題采用插空法、定序問題采用倍縮法是解決有限制條件的排列問題的常用方法.【跟蹤訓練】1.用0,1,2,3,4這五個數字組成無重復數字的自然數.(1)在組成的三位數中,求所有偶數的個數;(2)在組成的三位數中,如果十位上的數字比百位上的數字和個位上的數字都小,則稱這個數為“凹數”,如301,423等都是“凹數”,試求“凹數”的個數;(3)在組成的五位數中,求恰有一個偶數數字夾在兩個奇數數字之間的自然數的個數.組合應用題
男運動員6名,女運動員4名,其中男女隊長各1人.選派5人外出比賽.在下列情形中各有多少種選派方法?(1)男運動員3名,女運動員2名;(2)至少有1名女運動員;(3)隊長中至少有1人參加;(4)既要有隊長,又要有女運動員.【規(guī)律方法】(1)“含有”或“不含有”某些元素的組合題型.“含”,則先將這些元素取出,再由另外元素補足;“不含”,則先將這些元素剔除,再從剩下的元素中去選?。?2)“至少”或“最多”含有幾個元素的題型.考慮逆向思維,用間接法處理.【跟蹤訓練】2.(1)若從1,2,3,…,9這9個整數中同時取4個不同的數,其和為偶數,則不同的取法的種數是(
)A.60
B.63
C.65
D.66(2)從3名骨科、4名腦外科和5名內科醫(yī)生中選派5人組成一個抗震救災醫(yī)療小組,則骨科、腦外科和內科醫(yī)生都至少有1人的選派方法種數是________(用數字作答).排列、組合的綜合應用
從1到9的9個數字中取3個偶數4個奇數,試問:(1)能組成多少個沒有重復數字的七位數?(2)上述七位數中,3個偶數排在一起的有幾個?(3)(1)中的七位數中,偶數排在一起,奇數也排在一起的有幾個?【規(guī)律方法】利用先選后排法解答問題的三個步驟【跟蹤訓練】3.(2016年昌平區(qū)二模)2016年3月12日,第四屆北京農業(yè)嘉年華在昌平拉開帷幕.活動設置了“三館兩園一帶一谷”七大板塊.“三館”即精品農業(yè)館、創(chuàng)意農業(yè)館、智慧農業(yè)館;“兩園”即主題狂歡樂園、農事體驗樂園;“一帶”即草莓休閑體驗帶;“一谷”即延壽生態(tài)觀光谷.某校學生準備去參觀,由于時間有限,他們準備選擇其中的“一館一園一帶一谷”進行參觀,那么他們參觀的不同路線最多有______種.(用數字作答)分組分配問題【考向分析】分組分配問題是排列、組合問題的綜合運用,解決這類問題的一個基本指導思想就是先分組后分配.關于分組問題,有整體均分、部分均分和不等分組三種,無論分成幾組,都應注意只要有一些組中元素的個數相等,就存在均分現象.常見命題角度有:(1)整體均分問題;(2)局部均分問題;(3)不等分問題.課后感悟提升31個識別——排列問題與組合問題的識別方法識別方法排列若交換某兩個元素的位置對結果產生影響,則是排列問題,即排列問題與選取元素順序有關組合若交換某兩個元素的位置對結果沒有影響,則是組合問題,即組合問題與選取元素順序無關1.(2016年新課標Ⅲ)如圖所示,小明從街道的E處出發(fā),先到F處與小紅會合,再一起到位于G處的老年公寓參加志愿者活動,則小明到老年公寓可以選擇的最短路徑條數為(
)A.24
B.18
C.12
D.92.(2015年四川)用數字0,1,2,3,4,5組成沒有重復數字的五位數,其中比40000大的偶數共有(
)A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年項目采購合同專用條款CCGP
- 2025農產品購銷合同范本匯編
- 《硝酸銨合成》課件
- 《橋梁構造的奧秘》課件
- 2025電子版勞動合同
- 《職場壓力管理》課件
- 2025煤礦安全設備租賃合同
- 《多語詞典與應用》課件
- 2025汽車銷售勞動合同范本
- 牌匾設置關系協(xié)議書
- KAIJO焊線機參考教學課件
- 2023年鄭州黃河護理職業(yè)學院單招職業(yè)適應性測試筆試題庫及答案解析
- 禁食療法課件
- 5以內的相鄰數課件
- 《學習縱向展開議論》課件
- 政府采購業(yè)務知識培訓課件(PPT33張)
- 大體積混凝土施工質量控制論文
- 客戶退貨申請單
- 生活垃圾綜合處理廠焚燒發(fā)電施工組織設計(201頁)
- 苯冷卻器設計(共24頁)
- 名∶聚乙烯(PE)土工膜防滲工程技術規(guī)范
評論
0/150
提交評論