




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年長沙市K郡雙語實(shí)驗(yàn)中學(xué)高三下第四次大考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開式中的一次項(xiàng)系數(shù)為()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.3.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.4.已知冪函數(shù)的圖象過點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.5.已知是第二象限的角,,則()A. B. C. D.6.設(shè),是方程的兩個(gè)不等實(shí)數(shù)根,記().下列兩個(gè)命題()①數(shù)列的任意一項(xiàng)都是正整數(shù);②數(shù)列存在某一項(xiàng)是5的倍數(shù).A.①正確,②錯(cuò)誤 B.①錯(cuò)誤,②正確C.①②都正確 D.①②都錯(cuò)誤7.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.8.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形9.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心11.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.712.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,,則A的值是______.14.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______,的最大值是______.15.在平面直角坐標(biāo)系中,雙曲線的焦距為,若過右焦點(diǎn)且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.16.如圖,己知半圓的直徑,點(diǎn)是弦(包含端點(diǎn),)上的動(dòng)點(diǎn),點(diǎn)在弧上.若是等邊三角形,且滿足,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點(diǎn)是棱的中點(diǎn),,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.18.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.20.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.21.(12分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個(gè)特征向量,求的值.22.(10分)已知中,角所對邊的長分別為,且(1)求角的大?。唬?)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項(xiàng)系數(shù)為.故選:B.本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.2.A【解析】
觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。3.D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖冢?,所以,化簡得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.本題主要考查函數(shù)與方程的綜合問題,難度較大.4.A【解析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運(yùn)算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.5.D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;屬于中檔題.6.A【解析】
利用韋達(dá)定理可得,,結(jié)合可推出,再計(jì)算出,,從而推出①正確;再利用遞推公式依次計(jì)算數(shù)列中的各項(xiàng),以此判斷②的正誤.【詳解】因?yàn)?是方程的兩個(gè)不等實(shí)數(shù)根,所以,,因?yàn)?所以,即當(dāng)時(shí),數(shù)列中的任一項(xiàng)都等于其前兩項(xiàng)之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項(xiàng)都是正整數(shù),故①正確;若數(shù)列存在某一項(xiàng)是5的倍數(shù),則此項(xiàng)個(gè)位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計(jì)算可知,數(shù)列中各項(xiàng)的個(gè)位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個(gè)位數(shù)字為0或5的項(xiàng),故②錯(cuò)誤;故選:A.本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計(jì)算能力.7.B【解析】
設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號,此時(shí).故選:B.本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.8.B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B本題主要考查了對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.9.D【解析】
將函數(shù)的零點(diǎn)個(gè)數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個(gè)數(shù)問題,畫出函數(shù)的圖象,易知直線過定點(diǎn),故與在時(shí)的圖象必有兩個(gè)交點(diǎn),故只需與在時(shí)的圖象有兩個(gè)交點(diǎn),再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個(gè)公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)的問題,曲線的切線問題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.10.A【解析】
根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.11.C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.12.C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.14.【解析】
利用等差數(shù)列前項(xiàng)和公式,列出方程組,求出首項(xiàng)和公差的值,利用等差數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式,可求出的表達(dá)式,然后利用雙勾函數(shù)的單調(diào)性可求出的最大值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項(xiàng)公式為;(2),,令,則且,,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在時(shí)單調(diào)遞減,在時(shí)單調(diào)遞增,當(dāng)或時(shí),取得最大值為.故答案為:;.本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.15.【解析】
利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點(diǎn)為,過右焦點(diǎn)且與軸垂直的直線與兩條漸近線分別交于兩點(diǎn),則,,由已知,,即,所以,離心率.故答案為:本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程或不等式,是一道容易題.16.1【解析】
建系,設(shè),表示出點(diǎn)坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點(diǎn)建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時(shí),取得最小值1.故答案為:1.本題考查了平面向量的數(shù)量積運(yùn)算,坐標(biāo)運(yùn)算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進(jìn)而證得結(jié)論.(2)過作交于,由為的中點(diǎn),結(jié)合已知有平面.則,可求得.建立坐標(biāo)系分別求得面的法向量,平面的一個(gè)法向量為,利用公式即可求得結(jié)果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點(diǎn),.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點(diǎn),,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系.,,,設(shè)平面的法向量,則,即.令,則,..平面的一個(gè)法向量為.二面角的余弦值為.本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關(guān)系,考查利用向量法求二面角的方法,難度一般.18.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時(shí),根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價(jià)于,求出在的最小值即可.【詳解】(Ⅰ)當(dāng)時(shí),時(shí),不等式化為,解得,即時(shí),不等式化為,不等式恒成立,即時(shí),不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當(dāng)時(shí),取得最小值為實(shí)數(shù)的取值范圍是本題考查了絕對值不等式的解法與應(yīng)用問題,也考查了函數(shù)絕對值三角不等式的應(yīng)用問題,屬于常規(guī)題型.19.(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計(jì)算能力,屬于中檔題.20.(1);(2).【解析】
(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡得,因?yàn)?故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因?yàn)闉殇J角,故可得,由正弦定理可得,又的面積為可得,解得.本題主要考查了等差等比中項(xiàng)的運(yùn)用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時(shí)也考查了正弦定理與面積公式在解三角形中的運(yùn)用,屬于中檔題.21.【解析】
由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《第二單元 漢字輸入:第5課 詞語輸入速度快》教學(xué)設(shè)計(jì)-2024-2025學(xué)年浙江攝影版(2020)三年級下冊
- 2024秋八年級數(shù)學(xué)上冊 第13章 全等三角形13.5 逆命題與逆定理 3角平分線-角平分線的性質(zhì)教學(xué)設(shè)計(jì)(新版)華東師大版
- 8《課余生活真豐富》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年統(tǒng)編版(2024)道德與法治一年級上冊
- 10方便的手輪 教學(xué)設(shè)計(jì)-2024-2025學(xué)年科學(xué)六年級上冊粵教粵科版
- 7 鹿角和鹿腿(教學(xué)設(shè)計(jì))-2024-2025學(xué)年語文三年級下冊統(tǒng)編版
- 2023三年級英語上冊 Unit 1 Hello Part A 第一課時(shí)教學(xué)設(shè)計(jì) 人教PEP
- 12我的環(huán)保小搭檔(教學(xué)設(shè)計(jì))-部編版(五四制)道德與法治二年級下冊
- 胃息肉術(shù)后護(hù)理診斷及措施
- 5《 煮雞蛋》(教學(xué)設(shè)計(jì))人教版勞動(dòng)三年級上冊
- 14 文言文二則 學(xué)弈 教學(xué)設(shè)計(jì)-2024-2025學(xué)年語文六年級下冊統(tǒng)編版
- 軟件詳細(xì)設(shè)計(jì)說明書(例)
- 鋼拱橋?qū)m?xiàng)吊裝方案終稿
- 24式太極拳教案(1~4課)
- 哈薩克斯坦鐵路車站代碼
- 產(chǎn)業(yè)經(jīng)濟(jì)學(xué)的課后復(fù)習(xí)答案
- 中國綠色經(jīng)濟(jì)發(fā)展之路(PPT-37張)課件
- 客房控制系統(tǒng)——RCU系統(tǒng)培訓(xùn)PPT通用通用課件
- 履帶式液壓挖掘機(jī)挖掘機(jī)構(gòu)設(shè)計(jì)
- 川崎病診治指南最新ppt課件
- (會議紀(jì)要(2011)第29期)河南煤業(yè)化工集團(tuán)有限責(zé)任公司會議紀(jì)要
- 原子吸收分光光度計(jì)檢定規(guī)程
評論
0/150
提交評論