




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省永安一中2025屆高三高中畢業生第二次復習統一檢測試題數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.2.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內容是:每個大于2的偶數都可以表示為兩個素數的和,例如:,,,那么在不超過18的素數中隨機選取兩個不同的數,其和等于16的概率為()A. B. C. D.3.已知復數滿足,則的值為()A. B. C. D.24.已知函數,則()A.函數在上單調遞增 B.函數在上單調遞減C.函數圖像關于對稱 D.函數圖像關于對稱5.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件6.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.367.若復數滿足(是虛數單位),則的虛部為()A. B. C. D.8.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.9.已知函數,下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數,又是周期函數C.的圖像關于直線對稱 D.的最大值是10.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.11.點為的三條中線的交點,且,,則的值為()A. B. C. D.12.若復數滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知扇形的半徑為1,面積為,則_____.14.記復數z=a+bi(i為虛數單位)的共軛復數為,已知z=2+i,則_____.15.已知集合,若,且,則實數所有的可能取值構成的集合是________.16.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.18.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.19.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.20.(12分)在△ABC中,分別為三個內角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.21.(12分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.22.(10分)已知函數.(1)當時,解關于x的不等式;(2)當時,若對任意實數,都成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D考查三角函數圖象的變換規律以及其有關性質,基礎題.2.B【解析】
先求出從不超過18的素數中隨機選取兩個不同的數的所有可能結果,然后再求出其和等于16的結果,根據等可能事件的概率公式可求.【詳解】解:不超過18的素數有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.古典概型要求能夠列舉出所有事件和發生事件的個數,本題不可以列舉出所有事件但可以用分步計數得到,屬于基礎題.3.C【解析】
由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C本題考查復數的除法運算與求復數的模,屬于基礎題.4.C【解析】
依題意可得,即函數圖像關于對稱,再求出函數的導函數,即可判斷函數的單調性;【詳解】解:由,,所以函數圖像關于對稱,又,在上不單調.故正確的只有C,故選:C本題考查函數的對稱性的判定,利用導數判斷函數的單調性,屬于基礎題.5.A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.6.B【解析】
方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.7.A【解析】
由得,然后分子分母同時乘以分母的共軛復數可得復數,從而可得的虛部.【詳解】因為,所以,所以復數的虛部為.故選A.本題考查了復數的除法運算和復數的概念,屬于基礎題.復數除法運算的方法是分子分母同時乘以分母的共軛復數,轉化為乘法運算.8.A【解析】
根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.9.D【解析】
通過三角函數的對稱性以及周期性,函數的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數,周期函數,正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.本題考查三角函數周期性和對稱性的判斷,利用導數判斷函數最值,屬于中檔題.10.B【解析】
依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題11.B【解析】
可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.12.C【解析】
把已知等式變形,利用復數代數形式的除法運算化簡,再由復數模的計算公式求解.【詳解】解:由,得,∴.故選C.本題考查復數代數形式的乘除運算,考查復數模的求法,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據題意,利用扇形面積公式求出圓心角,再根據等腰三角形性質求出,利用向量的數量積公式求出.【詳解】設角,則,,所以在等腰三角形中,,則.故答案為:.本題考查扇形的面積公式和向量的數量積公式,屬于基礎題.14.3﹣4i【解析】
計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.本題考查了復數的運算,共軛復數,意在考查學生的計算能力.15..【解析】
化簡集合,由,以及,即可求出結論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實數所有的可能取值構成的集合是.故答案為:.本題考查集合與元素的關系,理解題意是解題的關鍵,屬于基礎題.16.【解析】
根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.本題主要考查等差數列、等比數列的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)推導出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設AC與BD的交點為G,推導出EC//FG,取BC的中點為O,連結OD,則OD⊥BC,以O為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系.不妨設,則,,,,,,,設平面的法向量,則,取,同理可得平面的法向量,設平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設,因為,,在中,,所以,所以二面角的余弦值為.本題考查求空間角中的二面角的余弦值,還考查由空間中線面關系進而證明線線相等,屬于中檔題.18.(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數方程的標準形式代入曲線C的直角坐標方程,根據韋達定理以及參數t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設點P的直角坐標為(x,y),因為P的極坐標為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設方程的兩根為t1,t2,則t1,t2為A,B對應的參數,且t1+t2,依題意,點M對應的參數為,所以|PM|=||.本題考查了簡單曲線的極坐標方程,屬中檔題.19.(1)見解析(2)見解析【解析】
(1)連結OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結OE.因為底面ABCD是菱形,所以O為AC的中點,又因為E是棱VC的中點,所以VA∥OE,又因為OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因為VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因為底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因為BD?平面BDE,所以平面VAC⊥平面BDE.本題考查了線面平行,面面垂直,意在考查學生的推斷能力和空間想象能力.20.(1);(2).【解析】
(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.本題主要考查了正、余弦定理及三角形面積公式,考查了轉化思想及化簡能力,屬于基礎題.21.(1)證明見解析,是,,,,;(2)【解析】
(1)根據是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標系,設,由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式求解.【詳解】(1)因為是球的直徑,則,又平面,∴,.∴平面,∴,∴平面.根據證明可知,四面體是鱉臑.它的每個面的直角分別是,,,.(2)如圖,以A為原點,,,所在直線為x,y,z軸建立直角坐標系,則,,,,.M為中點,從而.所以,設,則.由,得.由得,即.所以.設平面的一個法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買二手民房買賣合同標準文本
- 公交特許經營合同樣本
- epc合同樣本封皮
- 個人公寓轉租合同標準文本
- 中途入股合伙合同樣本
- 產品加工合同樣本
- 公墓養護合同樣本版
- oem 保密合同樣本
- 公交車站臺采購合同樣本
- 2025船舶租賃合同模板
- GB/T 17193-1997電氣安裝用超重荷型剛性鋼導管
- 靜配中心理論知識試題含答案
- (完整版)常見腫瘤AJCC分期手冊第八版(中文版)
- 江西檢測收費標準
- 手推割草機設計
- 2023跑狗報待更新-┫玄機來料總區┣-【萬料堂】-有來萬料堂中特不會難(開放注冊)-poweredbydiscuz!archiv
- 精裝修施工現場臨時用電施工方案
- 西師版數學四年級下冊全冊教案
- 應急柜檢查表
- (完整版)湘教版地理必修一知識點總結
- (完整版)叉車孔設計標準
評論
0/150
提交評論