相交線與平行線(全章常考知識點分類)_第1頁
相交線與平行線(全章常考知識點分類)_第2頁
相交線與平行線(全章常考知識點分類)_第3頁
相交線與平行線(全章常考知識點分類)_第4頁
相交線與平行線(全章常考知識點分類)_第5頁
已閱讀5頁,還剩63頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題7.9相交線與平行線(全章常考知識點分類專題)

【考點目錄】

第一部分基礎夯實篇

【考點1】生活中的平移.......................1

【考點2】對頂角、垂線定義..............2

【考點3】垂線段與點到直線距離.....3

【考點4】三線八角..3

【考點5】平行線的判定......................4

【考點6】平行線的性質.....................5

【考點7】平移的性質..........................6

【考點8】尺規(guī)作圖.7

第二部分綜合提升篇

【考點9】對頂角+角平分線+余角與補角+垂直綜合....9

【考點10】垂線段最短+兩點確定一條直線+兩點之間線段最短綜合10

【考點11】平行線的判定綜合........11

【考點12]平行線的性質與判定綜合............................12

【考點13]平移性質與平行線的性質與判定綜合......13

【考點14]平行線間距離..................14

第三部分培優(yōu)拓展篇

【考點15]平行線性質與判定中的折疊問題...............15

【考點161平行線性質與判定中的旋轉問題...............16

【考點17]平行線性質與判定中的平移問題...............17

【考點18]平行線性質與判定中的動點問題...............18

【考點19]平行線性質與判定中的最值問題...............18

【考點展示與方法解析】

第一部分基礎夯實篇

【考點1】生活中的平移

(24-25八年級上?山東濱州?期中)

1.2024年夏季奧運會在法國巴黎舉行,此次奧運會的會標如圖所示,平移會標可以得到的

試卷第1頁,共22頁

圖形是()

A.C.D.

(23-24七年級下?云南紅河?期末)

2.“寫堂堂正正中國字,做堂堂正正中國人”,中國的漢字中有些也具有平移現(xiàn)象,下列漢

字中可以看成由平移構成的是()

,親B朋C.好D友

(23-24七年級下?內蒙古巴彥淖爾?階段練習)

3.如圖,一張長為12cm,寬為6cm的長方形白紙中陰影部分的面積是cm2

【考點2】對頂角、垂線定義

(23-24七年級下?四川成都?階段練習)

4.如圖,直線/8、CD相交于點O,OE平分NBOC,OFLOE^O,若N/QD=80。,

則ZCOF=

(24-25七年級上?黑龍江哈爾濱?階段練習)

5.如圖,直線/3、CD相交于點。,OELCD于點、O,ZAOE=60°,則/50C的度數(shù)為

()

試卷第2頁,共22頁

(23-24七年級下?全國?單元測試)

6.下列四個圖形中,/I與N2為對頂角的圖形是()

【考點3】垂線段與點到直線距離

(23-24七年級下?福建廈門?期末)

7.若尸為直線/外一定點,/為直線/上一點,且PN=1,d為點P到直線/的距離,則d

的取值范圍為()

A.0<c?<lB.0<<7<1C.0<d《lD.0<(/<1

(19-20七年級下?河南信陽?期中)

8.如圖,ZUBC中,ZACB=90°,AC=6,BC=8,48=10,P為直線上一動點,連

接尸C,則線段尸C的最小值是()

(2024七年級上?全國?專題練習)

9.如圖,在三角形48C中,NACB=9Q°,CDVAB,垂足為。.若/C=4cm,

試卷第3頁,共22頁

5C=3cm,^5=5cm,則點4到直線8c的距離為cm,點8到直線NC的距離為

cm,點C到直線AB的距離為cm.

【考點4】三線八角

(2024七年級上?全國?專題練習)

10.如圖,下列結論正確的是()

A.N1與/2互為內錯角B.N3與N4互為內錯角

C./I與/3互為同旁內角D.N2與N4互為同位角

(23-24七年級上?全國?單元測試)

11.如圖,如果N2=100°,那么/I的同位角的度數(shù)為

(22-23七年級下?山東濟寧?期中)

12.如圖,在/I,N2,Z3,Z4,N5和/C中,同位角對數(shù)為0,內錯角對數(shù)為6,同旁

內角對數(shù)為c,則abc=.

試卷第4頁,共22頁

■A

<

【考點5]平行線的判定

(24-25七年級下?全國?單元測試)

13.如圖,下列條件中,不能判定48〃。尸的是()

C./1=/4D.=

(24-25七年級下?全國?單元測試)

14.下列圖形中,WZ1=Z2,能得到N8〃CD的圖形有()

(24-25七年級下?全國?單元測試)

15.如圖①是公園的一個健身器材,如圖②是該器材的正面示意圖,若該器材的標準為

AB//CD,則在以下三組數(shù)據(jù)中:①N4BC=100。,ZBCD=80°;

②/4BC=/BAD=1QO°;③N84D=100。,ZADC=80°.滿足要求的是.(請?zhí)顚?/p>

試卷第5頁,共22頁

(23-24七年級下?河北石家莊?期末)

16.下面是驗證紙條兩條邊線。,6是否平行的不同折疊方式:

(1)小明:如圖①,展開后測得N1=N2;

(2)小麗:如圖②,測得/1=/2;

(3)小君:如圖③,展開后測得/1+/2=180。;

(4)小晨:如圖④,展開后測得/2=/4.

則其中能判定兩條邊線6的是.(填序號)

【考點6]平行線的性質

(24-25七年級上?江蘇南京?期末)

17.如圖,已知/N與互補,DE平分N/DC,N1=4O。,那么/2=()

(23-24七年級下?廣西百色?期末)

18.如圖,一條公路兩次轉彎后,和原來的方向相同.如果第一次的拐角44=135。,則第

二次的拐角N2度數(shù)是()

試卷第6頁,共22頁

A.45°B.130°C.135°D.140°

(24-25七年級下?全國?單元測試)

19.如圖,已知AB〃CD〃EF,若Nl=60。,N3=140。,貝!I/2=,

(2024七年級下?全國?專題練習)

20.如圖,若已知〃斯,貝U/x、々、Nz三者之間的數(shù)量關系是.

【考點7]平移的性質

(23-24七年級下?廣西南寧?期末)

21.這個學期我們學習了平移,數(shù)學中也有許多平移的例子,如圖所示,這是用三角板和直

尺畫平行線的示意圖,將三角板/8C沿著直尺尸。平移到三角板的位置,就可以畫出

48的平行線直線/⑻就可以看成是直線4B經平移后所得的圖形.若平移的距離44'

的長度為7,則88'之間的距離為()

Q

A.6B.7C.7.5D.8

(24-25七年級下?全國?單元測試)

22.如圖,將直角三角形NBC沿切方向向上平移5cm得到三角形。斯,已知/B=90°.若

試卷第7頁,共22頁

EG=6cm,尸G=8cm,則陰影部分的面積為()

A.50cm2B.60cm2C.75cm2D.90cm2

(24-25七年級下?全國?單元測試)

23.如圖,三角形NBC中,ZABC=90°,將其沿8c所在的直線向右平移得到三角形

DEF,以下四個結論:?EC=CF-②ZA=/D;?AC//DF;(4)ZDEF=90°.其中

一定成立的結論有個.

(22-23八年級下?遼寧沈陽?階段練習)

24.如圖,△NBC經過平移得到,連接A8'、CC,若仍'=2.5cm,則點/與點H

之間的距離為cm.

【考點81尺規(guī)作圖

(23-24七年級下?遼寧沈陽?期末)

25.如圖,直線4〃4,點A在直線4上,以點A為圓心,適當長為半徑畫弧,分別交直線

4,4于C,8兩點,連接42,BC,若/1=72。,則/2的度數(shù)為()

試卷第8頁,共22頁

AC

h

h

A.30°B.32°C.36°D.42°

(23-24七年級下?山東濰坊?期中)

26.過點8畫線段/C所在直線的垂線段,正確的是()

DAC

(2020?四川達州?一模)

27.如圖,利用三角尺和直尺可以準確的畫出直線ABIICD,下面是某位同學弄亂了順序的

操作步驟:

①沿三角尺的邊作出直線CD;

②用直尺緊靠三角尺的另一條邊;

③作直線AB,并用三角尺的一條邊貼住直線AB;

④沿直尺下移三角尺;正確的操作順序應是:—.

試卷第9頁,共22頁

(23-24七年級下?河南平頂山?期末)

28.下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:直線/

和直線/外一點P;

求作:直線加,使得直線比經過點P且/〃m.

作法:

(1)在直線/上任取一點/;

(2)作射線NP;

(3)以/為圓心,以任意長為半徑畫弧,分別交直線/和射線4P于點2,點C;

(4)以尸為圓心,以/C為半徑畫弧,交線段PN于點。;

(5)以。為圓心,以8c為半徑畫弧,與上一圓弧交于點氏

(6)作直線尸£,即為直線〃?.所以,直線〃?即為所求.(如圖)

這樣作圖能使/〃m的依據(jù)是

第二部分綜合提升篇

【考點9]對頂角+角平分線+余角與補角+垂直綜合

(2024七年級下?上海?專題練習)

29.如圖,直線4B、CD相交于點。.已知480。=75。,把N/OC分成兩個角,且

NAOE=ZEOC,將射線OE繞點。逆時針旋轉角a(0。<a<360。)到OF,若尸=120。

時,。的度數(shù)是°.

30.如圖,直線4B與CD相交于點。,NAOC-2NAOE=20°,射線。尸平分NDOE,若

ZBOD=60°,貝|//。尸=.

試卷第10頁,共22頁

E

(21-22七年級下?河南洛陽?期末)

31.如圖,直線48、CD相交于點。,EOLAB,垂足為O,AAOD=125°.則/EOC的度

數(shù)為()

A.55°B.45°C.35°D.25°

(24-25七年級上?湖南衡陽?期末)

32.如圖,直線CD相交于點。,OE工AB,0D1OF,OB平分NDOG,給出下列

結論:①當NNO尸=60。時,NDOE=60°;②。。為4OG的平分線;③與N3。。相等的

角有3個;(4)ZCOG=ZAOB-2ZEOF.其中正確的結論為()

A.①②④B.②③④C.①③④D.①②③④

【考點10】垂線段最短+兩點確定一條直線+兩點之間線段最短綜合

(23-24七年級下?全國?單元測試)

33.用“垂線段最短”來解釋的現(xiàn)象是()

]測量跳遠成績

A.

試卷第11頁,共22頁

(23-24七年級下?河南鄭州?期末)

34.下列語句敘述正確的有()

A.相等的角是對頂角

B.直線外一點與直線上各點連接的所有線段中,垂線段最短

C.過一點有且只有一條直線與已知直線垂直

D.直線外一點到這條直線的垂線段叫做這點到直線的距離

(23-24七年級下?江西萍鄉(xiāng)?階段練習)

35.如圖,在△/BC中,AACB=90°,BC=12,AC=16,N2=20,點。是N8邊上的動

(23-24七年級下?陜西西安?階段練習)

36.如圖,在△/BC中,48=12,BC=9,/。二8c于點。,/。=8,若點£在邊42(不

與點43重合)移動,則線段CE最短為

【考點111平行線的判定綜合

(24-25七年級下?全國?單元測試)

試卷第12頁,共22頁

37.如圖,直線被直線c所截,給出下列條件:①N1=N2;②N3=N6;③N4+N7=180。;

④/5+/8=180。.其中能判定。〃6的是()

C.①③④D.①②③④

(2024七年級上?全國?專題練習)

38.如圖,點E在Z3的延長線上,下列條件中不能判斷/8〃CD的是()

A./3=/4B.ZC=NCBE

C./C+N/8C=180°D.Z1=Z2

(2024七年級上?全國?專題練習)

39.如圖,將長方形紙片/BCD的NC沿著GP折疊,使點C落在長方形的內部點E處,若

FH平分4BFE,MH工FH,ZCGF=40°,則G/與W的位置關系是

(24-25七年級上?全國?課后作業(yè))

40.如圖,瓦c三根木棒釘在一起,交點分別為4瓦/1=70。,N2=100。.現(xiàn)將木棒a力

分別繞點4臺順時針旋轉,同時開始,速度分別為12。人和2。八,當兩根木棒都轉滿了一周

時,它們同時停止轉動.轉動s時,木棒。力平行.

試卷第13頁,共22頁

ba

【考點12]平行線的性質與判定綜合

(24-25七年級下?全國?單元測試)

41.如圖,已知Z8〃CL?,E,尸是直線48上方兩點,連接CE,AF,CF,已知力產

平分NBAE,S.ZECF=^ZECD.若/E=15。,NECD=75。,求N尸的度數(shù)為()

A.10°B.15°C.20°D.30°

(24-25七年級上?河南南陽?期末)

42.將一副直角三角板如圖放置,使含30。角的三角板的短直角邊和含45。角的三角板的一

條直角邊對齊,則/I的度數(shù)為()

A.30°B.45°C.60°D.75°

(24-25七年級上?吉林長春?期末)

43.如圖,/C〃EG,點2在/C上,點廠在EG上,連接B尸,BD平分NABE,EH平

分NBEF交BF于點、H,NEBF=NEFB.給出下面四個結論:

①BD〃EH;

②BF平分NEBC;

③NBFE=NABE;

?NBFG-NBEH=9。°.

上述結論中,正確結論的序號有.

試卷第14頁,共22頁

R

(24-25七年級上?吉林長春?期末)

44.如圖,AB//CD,EF分別交/8、CD于點M、N,MG平濟NBMF,NG平分

NDNE,MH平分/AMF,下列四個結論中正確的是.(只填序號)

①NG=90。;(2)ZBMG+ZMNG=90°;③4HMN=4HNM;(4)MH//NG

【考點13]平移性質與平行線的性質與判定綜合

(2025七年級下?全國?專題練習)

45.如圖,在△/8C中,/8/C=45。,//C8是銳角,將zUBC沿著射線8c向右平移得

到ADEF(平移后點A,B,C的對應點分別是。,E,F),連接8.在整個平移過程

中,NNCZ)和NCZJE之間存在2倍關系,則N/CZ)的大小不可能為()

A.15°B.30°C.60°D.90°

(24-25七年級下?全國?單元測試)

46.如圖,長方形ABC。中,AB=1,第①次平移長方形48。沿的方向向右平移5個

單位,得到長方形4gGA,第②次平移將長方形4片£2沿4用的方向向右平移5個單位,

得到長方形422c2名,……第〃次平移將長方形4T紇沿474T的方向平移5個單

位,得到長方形方紇Q2(〃>2),若/紇的長度為2027,則"的值為()

試卷第15頁,共22頁

(24-25七年級上?上海?期末)

47.如圖,將一個周長為。厘米的三角形/8C沿射線43方向平移后得到三角形。斯,點

A、B、C的對應點分別是點。、E、F.連接CF,已知四邊形/E尸C的周長為6厘米,

那么平移的距離是厘米.(用含。、6的代數(shù)式表示結果).

(24-25七年級上?全國?假期作業(yè))

48.如圖所示,△/BC的周長為12cm,將AABC沿一條直角邊C8所在的直線向右平移加

個單位到位置,如圖所示.下列結論:①/CIM'C'且ZC=/C';②44'〃班'且

AA'=BB';③A/M'和ABDC'的周長和為12cm;④S四邊彩心。=S四邊如,.;⑤若/C=5,

機=2,則43邊掃過的圖形的面積為5,正確的是.(填序號)

【考點14]平行線間距離

(23-24八年級下?山東濟寧?期末)

49.已知直線a,b,c在同一平面內,且。〃6〃c,。與6之間的距離是5cm,b與c之間

的距離是2cm,則a與c之間的距離是()

A.3cmB.7cmC.3cm或7cmD.無法確定

(23-24七年級下?廣西玉林?期末)

50.我們知道:平行線間的距離處處相等.如圖,AB//DC,ED//BC,AE//BD,那么圖中

試卷第16頁,共22頁

與面積相等的三角形有()

(22-23七年級下?湖南株洲?期末)

51.如圖,AD//BC,△/2D的面積等于4,4)=2,BC=6,貝的面積是

(20-21七年級下?吉林松原?期中)

52.探究規(guī)律:我們有可以直接應用的結論:若兩條直線平行,那么在一條直線上任取一點,

無論這點在直線的什么位置,這點到另一條直線的距離均相等.例如:如圖1,兩直線

m//n,兩點H、T在"Z上,HELn于E,于尸,則〃E=7F.

如圖2,已知直線機〃*A、B為直線”上的兩點,C、。為直線加上的兩點.

(1)請寫出圖中面積相等的各對三角形:.

(2)如果A、B、C為三個定點,點。在加上移動,那么無論。點移動到任何位置總有:

與△N2C的面積相等;理由是:.

第三部分培優(yōu)拓展篇

【考點15]相交線與平行線中的折疊問題

(24-25七年級上?江蘇泰州?期末)

53.如圖1,在一張正方形紙片(正方形的兩組對邊分別平行)的兩邊上分別有/,2兩點,

連接點尸是正方形紙片上一點,過點尸翻折紙片,使點8落在直線上的點2'處,

折痕交N8于點Q.

試卷第17頁,共22頁

(1)①判斷折痕兒W與N8的位置關系,并說明理由;

②通過不斷地嘗試,除了上面的折法,過點尸再也折不出其它折痕與42有①中的位置關

系,其中的數(shù)學道理是;

(2)在圖1的基礎上,展平紙片,得到圖2,在圖2中過點P折出并序,與N2平行的折痕

(折痕左端點記為點。,右端點記為點E),請簡要闡述折疊方法并說明理由;

⑶將圖2的紙片展平得到圖3,點S是線段尸G上一動點(不與點£重合),若NDEF=26。,

ZEDS=a,NCAS=0,請直接寫出ZD"的度數(shù).(用。、萬的代數(shù)式表示)

(23-24七年級下?湖北武漢?期末)

54.數(shù)學活動課上,老師帶領學生們進行了折紙的系列綜合實踐活動:

(活動素材』如圖,長方形紙片/BCD(/切CDAD^BC).

k活動口如圖1,將長方形紙片ABCD進行折疊,第1次即折疊,折疊后仍與CD交

于點G,在探究過程中,同學們通過測量發(fā)現(xiàn)/I與/G尸E的度數(shù)總是相等的;

[活動2》如圖2,在活動1的基礎上,將長方形紙片進一步折疊,第2次沿MN折

疊,且同學們通過研究發(fā)現(xiàn)/I與22之間也存在一定的數(shù)量關系;

K活動3》如圖3,在活動2的基礎上,作/G/W的平分線網,并反向延長與/FAC的平

分線交于點Q,-0與之間是否也存在確定的數(shù)量關系呢?

[任務13求證:ZGEF=NGFE;

k任務2W若/1=25。,求22的度數(shù);

[任務3》請畫出點Q,并直接寫出與/I之間的數(shù)量關系.

試卷第18頁,共22頁

【考點16]相交線與平行線中的旋轉問題

(24-25七年級上?江蘇揚州?階段練習)

55.如圖1,乙4。8=140。,射線OC在平面內.

⑴如圖,0C垂直■平分/CQ4,則的度數(shù)為;

(2)若/NOC與28OC互補,求/BOC的大小;

(3)若射線。。繞點。從射線。/的反向延長線的位置出發(fā),以每秒1。的速度順時針旋轉;同

時射線以每秒5。的速度繞點O逆時針旋轉,各自旋轉180。后停止轉動,請直接寫出使

得射線04,OB,0c中某一條射線是另兩條射線所夾角的角平分線的時間.

(2024七年級上?全國?專題練習)

56.“一帶一路”讓中國和世界聯(lián)系更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了

兩座可旋轉探照燈,如圖1所示,燈/射線從/〃開始順時針旋轉至/N便立即回轉,燈8

射線從2尸開始順時針旋轉至8。便立即回轉,兩燈不停交叉照射巡視.若燈N轉動的速度

是每秒4度,燈8轉動的速度是每秒2度,假定主道路是平行的,即〃河N,且

NBAM"BAN=2:1.

(圖1)(圖2)

(1)填空:NBAN=°;

(2)若燈2射線先轉動15秒,燈/射線才開始轉動,在燈2射線到達8。之前,/燈轉動幾

秒,兩燈的光束互相平行?

⑶如圖2,若兩燈同時轉動,在燈/射線到達/N之前、若射出的光束交于點C,過C作ZACD

交尸。于點。、且44CD=120。,則在轉動過程中,請?zhí)骄?3/C與/BCD的數(shù)量關系是否

發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請說明理由.

試卷第19頁,共22頁

【考點17]相交線與平行線中的平移問題

(21-22七年級下?福建龍巖?階段練習)

57.如圖,AB//CD,直線EF與AB,CD分別相交于點G,H,2EHD=a

(0。<]<90。).小安將一個含30。角的直角三角尺加按如圖1所示的方式放置,使點N,

M分別在直線48,CD上,且在點G,〃的右側,ZP=90°,ZPMN=60°.

圖I

(1)NPNB+NPMDZP(填“〈”或

(2)如圖2,ZMNG的平分線NO交直線。于點。

①當N0IEFIIPM時,求a的度數(shù).

②小安將三角尺尸跖V保持斯〃尸M并向左平移,在平移的過程中求NVCW的度數(shù)(用含a

的代數(shù)式表示).

(23-24七年級下?甘肅武威?期末)

58.如圖,直線48〃CD,直線EF與48、C。分別交于點G、H,

/E〃C=a(0°<a<90。).小新將一個含30。角的直角三角板RW按如圖①放置,使點M

⑵若PM〃EF,/龍WG的角平分線NO交直線CD于點。

①如圖②,當NO〃E尸時,求a的度數(shù);

②小新將三角板麗向右平移,直接寫出NVON的度數(shù)(用含。的式子表示).

【考點18]相交線與平行線中的動點問題

(23-24七年級下?北京?期中)

59.已知,直線48〃CZ>,點E為直線4B上一定點,直線EK交CD于點尸,尸G平分

試卷第20頁,共22頁

ZDFK,ZAEF=a.

⑴如圖1,當a=70。時,NGFK=°;

⑵點P為射線尸E上一點,點M為直線4B上的一動點,連接PW,過點尸作尸NJ.PM交直

線CD于點N.

①如圖2,點尸在線段所上,若點M在點E左側,求與/PNC的數(shù)量關系;

②點尸在線段莊的延長線上,當點加?在直線2B上運動時,/九0N的一邊恰好與射線bG

平行,直接寫出此時/尸加的度數(shù)(用含a的式子表示).

(23-24七年級下?浙江寧波?階段練習)

60.如圖1,/4CB=90°,MA\\BN.

(1)①如果NM4c=28。,求/C2N的度數(shù);

②設NM/C=a,NCBN=。,直接寫出a、夕之間的數(shù)量關系:;

(2)如圖2,/MAC、/CBN的角平分線交于點尸,當/M4C的度數(shù)發(fā)生變化時,//P2的

度數(shù)是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出一/尸8的度數(shù);

(3)在(2)的條件下,若/M4C=44。,點E為射線8N上的一個動點,過點E作E尸〃2C

交直線4P于點R連接EP.己知/FEP=15。,求N8PE的度數(shù).

【考點19]相交線與平行線中的最值問題

(2025七年級下?江蘇揚州?專題練習)

61.在七年級的平行線性質與判定的學習中,我們常借助于三角板來研究其相關知識,現(xiàn)有

一副三角板如圖1所示,其中/4CB=/EDF=90。,44=30。,ZE=45°.請同學們結合

己有的知識及活動經驗,解決下列問題:

試卷第21頁,共22頁

初步感知:

問題1:將上述三角板的直角頂點重合在一起,如圖2所示,當CE〃/8時,則=

問題2:如圖3,當C4平分/EC尸時,請寫出圖中兩條平行的直線,并說明理由.

深度探究:

問題3:將上述三角板按圖4所示的方式擺放,點/、8在直線G"上,點。、尸在直線

上,直線G//〃MV,保持三角板43C不動,現(xiàn)將三角板尸繞點。以每秒3。的速度順時

針旋轉,設旋轉時間為,秒,且0WY60,是否存在t的值,使邊8c與另一塊三角板。斯

的一條直角邊平行,若存在請求出f的值;若不存在請說明理由.

問題4:將上述三角板按圖5所示的方式擺放,點C與點。重合,保持三角板/8C不動,

將三角板。昉繞點C旋轉,使點尸在直線8c上方,當兩塊三角板的兩條邊互相平行時,

若(女的度數(shù)最大值為加,最小值為",貝U"?-〃=_。

試卷第22頁,共22頁

1.c

【分析】本題考查的是生活中的平移現(xiàn)象,熟知在平面內,把一個圖形整體沿某一的方向移

動,這種圖形的平行移動,叫做平移變換是解題的關鍵.根據(jù)圖形平移的性質解答即可.

【詳解】解:由圖形可知,選項c與原圖形完全相同.

故選:C.

2.B

【分析】本題考查生活中的平移,根據(jù)平移的性質,進行判斷即可.

【詳解】解:根據(jù)題意,可得:“朋”可以通過平移得到.

故選:B.

3.12

【分析】本題考查了生活中的平移現(xiàn)象,平移后得一個矩形,一邊長為2,另一邊長為10,

再根據(jù)面積相減即可,解題的關鍵是將圖形平移得到一個新的矩形,用原矩形的面積減去平

移后的面積即可.

【詳解】解:將陰影部分的右邊平移至右邊可構成一個矩形,用原來矩形的面積減去平移后

得到矩形的面積,

二陰影部分的面積是12x6-(12-2)x6=12(cm)

故答案為:12.

4.50°##50度

【分析】本題考查了垂線的定義,角平分線的定義,對頂角相等的性質,熟練掌握這些知識

點是解題的關鍵.先根據(jù)對頂角相等求出NBOC的度數(shù),再根據(jù)角平分線的定義求出NCOE

的度數(shù),根據(jù)垂線的定義得出NEO9的度數(shù),即可求出/C。尸的度數(shù).

【詳解】解:和/8OC是對頂角,

ZAOD=ZBOC,

ZAOD=80°,

ZBOC=80°,

???OE平分/3OC,

:.ZCOE=-ZBOC=40°

2

OFLOE,

ZEOF=90°,

答案第1頁,共46頁

ACOF=AEOF-ZCOE=90°-40°=50°,

故答案為:50°.

5.C

【分析】本題主要考查了對頂角相等、垂直的定義等知識點,靈活運用相關性質成為解題的

關鍵.

根據(jù)垂直的定義可得/DOE=90。,進而可得44。。=150。,然后根據(jù)對頂角相等即可.

【詳解】解:-.-OE1CD,

ZDOE=90°,

■,■ZAOE=60°,

:.ZAOD=ZAOE+ZDOE=150°,

:.^BOC=ZAOD=150°.

故選:C.

6.B

【分析】本題主要考查了對頂角的定義,有公共頂點,且角的兩邊互為反向延長線的兩個角

叫做對頂角,據(jù)此求解即可.

【詳解】解:根據(jù)對頂角的定義可知,只有B選項中的N1與N2為對頂角,

故選:B.

7.C

【分析】本題考查點的直線的距離,根據(jù)垂線段最短即可求出答案.

【詳解】解:由垂線段最短可知:0<dWl,

當"=1時,

此時P4,/,

故選:C.

8.C

【分析】本題考查垂線段最短.根據(jù)垂線段最短,得到當尸CJ.NB時,尸C的值最小,利用

等積法進行計算即可。

【詳解】解:???點到直線的距離,垂線段最短,

當尸時,尸C的值最小,

在R1A48C中,

ZACB=90°,AC=6,BC=8,AB=W,

答案第2頁,共46頁

:.-ABPC=-ACBC,即:10PC=6x8,

22

.-.PC=4.8,

故選:C.

9.432.4

【分析】本題考查了點到直線的距離,解題的關鍵是熟練掌握點到直線的距離的定義;根據(jù)

三角形等面積法求出CD,再根據(jù)點到直線的距離的定義即可得解.

【詳解】解:???S“Bc=g/2CD=g/C.2C,

.-.-x5-CD=-x4x3,

22

/.CD=2.4cm,

,點/到直線2C的距離為NC=4cm,點8到直線NC的距離為8c=3cm,點C到直線

的距離為。=2.4cm,

故答案為:4,3,2.4.

10.D

【分析】本題考查了同位角,內錯角,同旁內角和鄰補角,根據(jù)同位角,內錯角,同旁內角

和鄰補角的概念判斷即可.

【詳解】解:A、Z1和/2是同位角,故A不符合題意;

B、N3與N4不是內錯角,故B不符合題意;

C、/I與/3不是同旁內角,故C不符合題意;

D、/2與N4互為同位角,故D符合題意;

故選:D.

11.80。##80度

【分析】本題考查同位角,領補角的性質,由于N2=100。,利用鄰補角定義可求N3,而/3

就是N1的同位角.

【詳解】解:如圖所示,

答案第3頁,共46頁

.-.Z3=80°,

???Zl的同位角N3等于80。.

故答案為:80。.

12.16

【分析】根據(jù)同位角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的同側,

并且在第三條直線(截線)的同旁,則這樣一對角叫做同位角.內錯角:兩條直線被第三條

直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的兩旁,則

這樣一對角叫做內錯角.同旁內角:兩條直線被第三條直線所截形成的角中,若兩個角都在

兩直線的之間,并且在第三條直線(截線)的同旁,則這樣一對角叫做同旁內角,結合圖形

進行分析即可進行分析即可

【詳解】解:同位角有:/I與NC,N5與/C,

內錯角:/2與N4,N3與25,

同旁內角:N2與N5,N3與N4,/4與/C,N3與/C,

.■.a=2,b=2,c=4,

abc=2x2x4=16,

故答案為:16

【點睛】此題主要考查了三線八角,關鍵是掌握同位角的邊構成“尸'形,內錯角的邊構成“咨形,

同旁內角的邊構成“。形.

13.D

【分析】此題考查了平行線的判定,熟練掌握平行線的判定定理是解題關鍵.根據(jù)平行線的

判定定理判斷求解即可.

【詳解】解:因為乙4=/3,所以尸,故A不符合題意;

因為4+/2=180。,所以4B〃。尸,故B不符合題意;

因為/1=/4,所以48〃。尸,故C不符合題意;

因為a4=/1,所以故D符合題意.

故選:D.

14.B

【分析】本題考查了平行線的判定,掌握判定方法是解題的關鍵.

根據(jù)平行線的判定方法逐一判斷即可.

【詳解】解:A、ZI與N2不是同位角,內錯角,同旁內角,故不能判斷故A

答案第4頁,共46頁

錯誤;

B、Z1=Z2,即/A4C=N/CD,內錯角相等可判定出48〃CD,故B正確;

C、/I與不是同位角,內錯角,同旁內角,故不能判斷故C錯誤;

D、N1與/2不是同位角,內錯角,同旁內角,故不能判斷48〃CD,故D錯誤;

故選:B.

15.①③##③①

【分析】本題考查了平行線的判定,熟悉掌握判定方法是解題的關鍵.

根據(jù)平行線的判定方法逐一判斷即可.

【詳解】①/4^+/8。=100。+80。=180。,同旁內角互補,兩直線平行,則

滿足要求;

②//2C=NR1D=1OO。,無法判定不滿足要求;

③4840+44”?=100。+80。=180。,同旁內角互補,兩直線平行,貝ij4B〃CD,滿足要求;

綜上所述:①③符合要求;

故答案為:①③.

16.(1)(2)(3)

【分析】本題考查了平行線的判定,熟記平行線的判定定理是解題的關鍵.本題根據(jù)平行線

的判定定理,進行分析即可得解.

(1)Z1=Z2,根據(jù)內錯角相等,兩直線平行進行判定;(2)Z1=Z2,根據(jù)同位角相

等,兩直線平行進行判定;(3)Zl+Z2=180°,根據(jù)同旁內角互補,兩直線平行進行判

定;(4)N2=N4,根據(jù)同旁內角相等無法判定兩直線平行;

【詳解】解:(1)因為Z1=N2,所以。|也符合題意,故⑴正確;

(2)因為Z1=Z2,所以a\\b,符合題意,故(2)正確;

(3)因為/1+/2=180。,所以。||6,符合題意,故(3)正確;

(4)因為N2與N4是同旁內角,所以不一定能判定兩直線平行,不符合題意,故(4)錯

誤;

故答案為:(1)(2)(3).

17.D

【分析】本題考查了平行線的判定和性質,熟練掌握平行線的判定和性質是解題的關鍵.根

據(jù)題意,由條件得到從而得至<JNM)E=4O°,結合角平分線得到

ZADC=2ZADE=80°,即可得到/2的度數(shù).

答案第5頁,共46頁

【詳解】解:???/4與互補,

??.AD//BC,

???Zl=ZADE,

vZl=40°,

ZADE=40°,

???OE平分//QC,

.-.Z^DC=2Z^DE=80°,

???AD//BC,

:,ZADC+ZDCB=\S00,

ZZ)CS=180°-80°=100°,

Z2=ZDC5=100°.

故選:D.

18.C

【分析】此題主要考查了平行線的性質.解題的關鍵在于熟練掌握平行線的性質.根據(jù)兩直

線平行,內錯角相等,可知進而得出結果.

【詳解】解:如圖,

??,一條公路兩次轉彎后,和原來的方向相同,

:.AC//BD,

??.NB=NA=135。,

故選:C.

19.20。##20度

【分析】此題考查了平行線的性質.根據(jù)平行線的性質得到/皮g=/1=60。,

ZCOF=180°-Z3=40°,即可得到答案.

【詳解】黑..?:AB〃EF

??.ZBOF=Z1=60°,

???CD//EF,

/.ZCOF=180°^Z3=40°,

???Z2=ABOF-ZCOF=20°

答案第6頁,共46頁

故答案為:20°

20./x+/z=/y

【分析】本題主要考查平行線的性質,掌握其性質的運用是解題的關鍵.根據(jù)平行線的性質

“兩直線平行,同旁內角互補”即可求解.

【詳解】解:斯,

.-.Zx+Zz+ZCEF=180°,貝I]NCEF=180°-Zx-Zz,

■■CD//EF,

.-.Zy+ZCEF=180°,則/C斯=180。-々

.-.180°-Zx-Zz=180°-Zj,

Zx+Zz=Zy

故答案為:/x+/z=4y.

21.B

【分析】本題主要考查了平移的性質,理解并掌握平移的性質是解題關鍵.平移是指在同一

平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫

做圖形的平移運動,簡稱平移.平移不改變圖形的形狀和大小,圖形經過平移,對應線段相

等,對應角相等,對應點所連的線段相等.根據(jù)平移的性質,即可獲得答案.

【詳解】解:根據(jù)題意,平移的距離44'的長度為7,

則33'之間的距離為7.

故選:B.

22.A

【分析】本題考查了平移的基本性質和梯形的面積公式.根據(jù)平移的性質可得S陰影=$梯筋CGE,

再根據(jù)梯形的面積公式即可得到答案.

【詳解】解:???將直角三角形沿切方向向上平移5cm得到三角形。斯,

??.^DEF=^ABC,BE=5cm

EF=BC=6+8=14cm,SDFF=SARC,

???S&ABC-S“EG=SADEF~S&AEG,

$陰影-S梯形BCGE=,X(6+14)X5=50cm2

故選:A.

答案第7頁,共46頁

23.3

【分析】本題考查了平移的性質,平行線的判定,掌握平移的性質是解題的關鍵.

根據(jù)平移的性質,平移后不改變圖形的形狀和大小,也不改變圖形的方向,得到乙4=/。,

ZACB=ZDFE,ZDEF=ZABC=90°,則/C,據(jù)此即可解答.

【詳解】解:???三角形/3C中,//BC=90。,將其沿8C所在的直線向右平移得到三角形DEF,

:.ZA=ND,ZACB=ZDFE,ZDEF=ZABC=90°,

:.AC//DF

???②,③,④選項正確,不能得出EC=直,故④不正確,一定成立的結論有3個.

故答案為:3.

5

24.2.5##-

2

【分析】本題考查了平移的性質.根據(jù)圖形的平移,對應點的平移的距離是相等,再結合

33'=2.5cm,即可作答.

【詳解】解:如圖:連接

???△48C經過平移得到AHB'C',連接89、CC,且33'=2.5cm,

A'A=BB'=2.5cm,

故答案為:2.5.

25.C

【分析】本題考查平行線的性質.先根據(jù)平行線的性質得出//C8的度數(shù),再由=

得出一/2。的度數(shù),由平角的定義即可得出結論.

ZABC=ZACB=72°,

ZABD=1800-ZABC-Z1=180°-72°-72°=36°,

答案第8頁,共46頁

Z2=AABD=36°.

故選:c.

26.B

【分析】本題主要考查過直線外一點作已知直線的垂線段,根據(jù)垂線段的定義依次判斷每個

選項.

【詳解】解:A.圖上為過/點畫線段所在直線的垂線段,故該選項不符合題意;

B.圖上為過點8畫線段NC所在直線的垂線段,故該選項符合題意;

C.圖上為過3c上一點。畫線段/C所在直線的垂線段,故該選項不符合題意;

D.圖上為過點3畫線段8c的垂線段,故該選項不符合題意;

故選:B.

27.③②④①

【分析】根據(jù)同位角相等兩直線平行判斷即可.

【詳解】解:根據(jù)同位角相等兩直線平行則正確的操作步驟是③②④①,

故答案我③②④①.

【點睛】此題主要考查了復雜作圖,關鍵是掌握同位角相等,兩直線平行.

28.內錯角相等,兩直線平行

【分析】本題考查了尺規(guī)作圖法一做一個角等于已知角,平行線的判定,掌握平行線的判定

是解題的關鍵.根據(jù)作一個角等于已知角的方法可知=再利用平行線的判定

即可解答.

【詳解】解:由作法可知NEPD=ZCAB,

.'.I//m,

依據(jù)是:內錯角相等,兩直線平行,

故答案為:內錯角相等,兩直線平行.

29.82.5或202.5

【分析】本題考查的是對頂角的性質,角的和差運算,分兩種情況討論:當。尸在N8OC

之間時,當。尸在之間時,先求解N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論