




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
-
TECHNICALANNEX
PbLiNiNa
Contents
SCOPEANDPURPOSEOFTHETECHNICALANNEX
4
PARTI:IDENTIFIEDBATTERYTECHNOLOGIESANDTHEIRPOTENTIAL
5
A.MAINSTREAMBATTERYTECHNOLOGIESANDTHEIRINNOVATIONPOTENTIAL
5
A.1.Lead-basedbatteries
6
A.2.Lithium-basedbatteries
7
A.3.Nickel-basedbatteries
9
A.4.Sodium-basedbatteries
10
B.FUTUREBATTERYTECHNOLOGIESANDTHEIRPOTENTIAL
11
PARTII:BATTERYEND-USERAPPLICATIONR&DFOCUSAREA
16
A.R&DAREA-AUTOMOTIVEMOBILITY
16
A.1.Automotive12Vauxiliarybatteries
17
A.2.Automotive12VStart-Lighting-Ignitionbatteries(SLIbatteries)
19
A.3.Heavycommercialvehiclestand-bybatteries
20
A.4.AutomotiveHybridElectricVehiclepropulsionbatteries(HEVs)
21
A.5.AutomotiveBatteryElectricVehicles(BEVs)
22
B.R&DAREA-MOTIVEPOWERMATERIALHANDLINGANDLOGISTICSAPPLICATIONS
24
C.R&DAREA-MOTIVEPOWEROFF-ROADTRANSPORTATION
25
C.1.Batteriesinoff-roadindustrialvehicles
25
C.2.Batteriesinrailwayapplications
26
C.3.BatteriesinMarineapplications
27
C.4.BatteriesinAviationapplications
30
D.R&DAREA:BATTERIESFORSTATIONARYENERGYSTORAGE
32
D.1.Batteriesforuninterruptedpowersupply(UPS)
32
D.2.BatteriesforTelecom(TLC)
34
D.3.Batteriesforresidentialandcommercialenergystoragebehindthemeter
36
D.4.Batteriesforutilitygrid-scalestorage(large-scaleESS–infrontofthemeter)
38
D.5.Batteriesinoff-gridapplications
40
BATTERYINNOVATIONROADMAP2030
-
ScopeAndPurposeOfTheTechnicalAnnex
ThisTechnicalAnnextotheEUROBATWhitePaper‘BatteryInnovationRoadmap2.0’providesthereaderwithmorein-depthtechnicalbackgroundonthestate-of-playandinnovationpotentialofthemainstreamlead-,lithium-,nickel-andsodium-basedbatteries,aswellasonpromisingfuturebatterytechnologieswithahorizonupto2030.TheAnnexconsistsoftwomainparts.
Thefirstpartanalysesthestate-of-the-artandpotentialforimprovementofeachidentifiedbatterytechnologyinrelationtotheirintrinsicperformance,safetyandenvironmentalaspects.
Asbatteriesaredesignedtobeusedinparticularapplications,thesecondpartoftheAnnexisevenmoreimportantandanalysesthemainstreambatterytechnologiesusedincriticalapplicationsinsupportoftheobjectivesoftheGreenDeal.InthispartII,thebatteryKPIsareconsideredperapplicationastheinnovationpriorityareasforthedifferentmainstreambatterytechnologiesarestronglylinkedtothis.
BATTERYTECHNOLOGIESANDAPPLICATIONS
PbLiNiNa
LEADBASED
LITHIUMBASED
NICKELBASED
SODIUMBASED
ADVANTAGES
ADVANTAGES
ADVANTAGES
ADVANTAGES
Affordable,provensafe
Highenergydensity,
Longlife,
Relativelyhighenergy
andsustainable
lowweight
reliability
density,lowweight
十
4EUROBAT
BATTERYINNOVATIONROADMAP2030
IdentifiedBattery
Part1
Technologiesand
theirpotential
ThebatterytechnologiesconsideredinthisWhitePaperhavebeenselectedbecauseoftheirpotentialforfurtherimprovementandtheircontributiontomeetingtheobjectivesoftheEuropeanGreenDealandthenewBatteriesRegulationthatisunderdevelopment.
Thefirstchaptercoverstoday’smainstreambatterytechnologies(lead-,lithium-,nickel-andsodium-based),whilstthesecondchaptercoversthemostpromisingupcomingtechnologiesidentifiedtocomplementtheprogressmadeintheexistingtechnologies.
A.
Mainstreambatterytechnologiesandtheirinnovationpotential
Decadesofmarket-drivenR&Dhasresultedinawidevarietyofcommerciallead-,lithium-,nickel-andsodium-basedbatteryproducts.Thislargevarietyofproductsistheresultofincrementalimprovementsintroducedoverdecadestofitthespecificneedsoftheapplicationsandtheirever-increasingdemands.
Today’smainstreamlead-,lithium-,nickel-andsodium-basedbatterytechnologiesstillhaveinnovationpotentialtocontinueservingfurtherevolvingmarkets.Assuch,theyshouldbeconsideredaskeytechnologiestofurtherreduceCO2emissionsandtomakeEuropelessdependentonenergyandrawmaterialimports,alsoby2030.
Thischapterhighlightstheinnovationsofeachofthevariousmainstreamchemistries.However,itshouldbestressedthatcombiningbatterychemistrieswithinthesameapplicationalsoprovidessynergies,suchasindevelopmentsformild-hybridEVsorinBEVs,wheretheHVlithiumpropulsionbatteryissupportedbytheLVadvancedleadbatterytoensurethefunctionalsafety.
十
EUROBAT5
BATTERYINNOVATIONROADMAP2030
A.1.Leadbasedbatteries
Pb
State-of-the-art
Theleadbatteryhasbeenthepredominantenergystoragedevicefortheindustrialandautomotivemarketsforover100years.Differentdesignsoflead-basedbatteriesareavailable,withanimportantchoicetobemadebetweenfloodedor‘vented’,requiringmaintenance,ormaintenance-freevalve-regulated(VRLA)batteries.TheycanbeconnectedinlargebatteryarrangementswithoutsophisticatedmanagementsystemsandaredifferentiatedfromtheothertechnologiesbyalowcostperkWhinstalledandlowcostperkWhelectricitythroughput.
Itisoftenoverlookedthattheleadbatteryhascontinuouslyinnovatedin
responsetonewrequirementsintermsoffunctionality,durabilityandcost.The
recentmainstreamintroductionsofabsorptiveglass-mat(AGM)batteries,enhancedfloodedbatteries(EFBs),batterymonitoringsensorsandbatterymanagementsystems(BMS)areobviousexamplesofcontinuousimprovement.
Improvementpotential
Tocompetewithupcomingelectrochemicalstoragetechnologies,thereisaneedtoacceleratethepaceofinnovation.Thiscouldbethroughabetterdynamiccharge-acceptanceatuncompromisedhightemperaturedurabilityorbyimprovingtheenergyandpowerdensitieswithimprovedcycle-life.Specificpowercouldbeimprovedbydevelopingnewadvancedadditivestodecreasetheinternalresistance,whilethecyclelifecouldbelengthenedthroughdesignenhancements,suchascorrosion-resistantlead-alloys.Moreintelligentbatteryoperationmodescouldalsobedeveloped.
Apartfromfundamentalresearchtoimprovetheelectrolyte,thematerialsandthecomponentsused,otherimprovementscanstillbemade.Theseincludematerialinnovationsonsyntheticexpanders,nano-basedcarbonmaterials,newalloycompositionsandimprovedThinPlatePureLead(TPPL).Alsobipolarcelldesignwillbekeydevelopmentsforlead-basedtechnologiestofurtheradvanceinviewoffuturerequirementsinamultitudeofapplications.TPPLandCarbonEnhancedarepromisingcandidatesforincreasedservicelife,PSOCoperationandimprovedpowerdensity.
Theoutstandingfeatureinthisprocessisthattheseimprovementshavebeentailoredtotheparticularapplication.
Environmentalaspects
Occupationalexposuretoleadisnowundercontrolbecausethebatteryindustryhasproactivelytakenmeasurestolimittheexposureofitsemployeestobloodleadcontaminationduringthemanufacturingprocess.Europeshouldallowthemarkettodrivechangeandrecentprogressonleadbatteryresearchshouldnotbediscounted.Thefurtherdevelopmentofleadbatteriesinavarietyofenhancedtechnologieswillserveapplicationsthatcancontributetotheachievementofthezero-emissionstargetsintheEuropeanGreenDeal.
Lead-basedbatterycirculareconomytargets
Recyclingtargetsforleadbatterieswillbemaintainedataveryhighlevel,withefficiencyover90%andrecyclingofactivematerialsat99%,achievingacirculareconomy,whichwillbenefitthewholebatteryvaluechainandimproveEurope’sindependencyonrawmaterialsimportsneededtobuildthebatteries.
十
6EUROBAT
BATTERYINNOVATIONROADMAP2030
A.2.Lithium-basedbatteries
State-of-the-art
Li
Lithium-ion(Li-ion)isconsideredtheleadinglithiumtechnologyforautomotiveandindustrialapplicationsandwillremainsoin2030.Lithiumiscurrentlydeployedinmass-producedstandardcelltypesindifferentapplications–astrategydrivenbycostandsafetyreasons.Themajorrequirementforhigherenergydensitiestoachieveincreaseddrivingrangeisdirectlylinkedtoe-mobility.Thisresultsinadevelopmentroadmapfor2030thatmainlyconsidersthelithium-basedtechnologiesbasedonmodifiednickelcobaltmanganeseoxide(NMC)materials,fromNMC111toNMC811,withincreasednickelandreducedcobaltcontentincombinationwithhighcapacitiveanode
materialswithcarbon/siliconcomposites.Solidstatetechnologyshouldalsobetargetedtoincreasetheenergydensityandimprovethesafetyaspect.TheLi-iontechnologiesconsideredinthisRoadmapconsistofacombinationofthefollowingavailableanodeandcathodematerials:
Tabulation:SpecificcapacitiesofanodeandcathodematerialsofLi-ionbatteriescoveredinthisRoadmap
Improvementpotential
ThedevelopmentroadmapforLi-ion,Ni-richNMCpositiveelectrodematerialsandnewmaterialsforthenegativeelectrode(e.g.Si/Ccomposite)consideredforfuturedevelopmentare:
?Generation2a:NMC111/100%C
?Generation2b:NMC523-622/100%C
?Generation3a:NMC622/C+Si(5-10%)
?Generation3b:NMC811/Si/Ccomposite
Chart:Generationoflithiummaterialsconsideredforfurtherdevelopmentby2030
十
EUROBAT7
BATTERYINNOVATIONROADMAP2030
Duetothevarietyofpossiblecombinationsofcathodeandanodematerials,theresultingLi-ionbatteriesshowspecificandindividualperformancecharacteristicssuitablefordifferentkindsofapplications.ThedevelopmentofLi-iontechnologiessuitableforindustrialandautomotiveapplicationsisstillachallengeintermsofmaterialresearchprocess,production,development,recycling,safetyandtransportation.
Requirementsforcathodematerials
?Highspecificenergy(mAh/g)
?Safety
?Stability(cycleandcalendric)
?Highvoltage
?Lowpolarisation
?Lowprice
?Lowcontentofrarematerials(e.g.cobalt)
?LowCO2footprintatproduction
?Environmentallyandethicallyharmless
?Easyprocessing
?Availability
?Highpowercapability
Economicandsafetyrequirements
?Lowprice
?Easyprocessing
?Environmentallysafeandethical
?Operationallysafe
Challengesidentified
?Productionprocesses
?Recyclingprocesses
?Transportation
Environmentalaspects
Inordertoreducetheenvironmentalimpactandimprovingtheavailabilityoflithiumbatterycomponents,astrongpushisexpectedinresearchaimedatreducingthecontentofrarematerials(Cobalt),atresearchingalternativematerials,activatingextractionprocessesenvironmentallysafeandethicallysoundminingandmanufacturing,andalsoadevelopmentoflow-carbonmanufacturingprocesses.
Lithiumbasedbatterycirculareconomytargets
Recyclingtargetsforleadbatterieswillbemaintainedataveryhighlevel,withefficiencyover90%andrecyclingofRecyclingtargetsforlithiumbatterieswillbemaintainedatthecurrentlevelof50%,butactivematerialrecyclingisexpectedtoincreasefrom65%toreach85%by2030.Therecoveryofnickel,cobaltandlithiumwillalsobefullycommerciallyviableinfuture.
十
8EUROBAT
BATTERYINNOVATIONROADMAP2030
A.3.Nickel-basedbatteries
Ni
State-of-the-art
Nickel-basedbatteriesarethetechnologyofchoiceforapplicationsusedinextremeclimate,cyclingorfastchargingconditions.Differentdesignsareavailable:pocket,sintered,plastic-bonded,nickelfoamandfibreelectrodes.Cellsareprismaticorspiralwound,flooded(or‘vented’)orvalveregulated,thelatteralsobeingmaintenancefree.Thankstodecadesofsafeuseunderthemostextremeoperatingconditionsandcontinuousdevelopment,nickel-cadmiumismostlyusedinspecialandnicheapplications.
Improvementpotential
Usinginnovativematerials,thistechnologycanbefurtherdevelopedforexistingapplicationsandasareplacementsolutionwithitskeyperformancepropertiesinextremeconditionshavingthepotentialforfurtherimprovement.Nickel-basedbatteriesareamongtheelectrochemicalstoragesystemsthatshouldbeconsideredforindustrialapplicationsoverthenextdecade.
Environmentalaspectsandcirculareconomytargets
Recyclingefficiencyshouldincreasefromthecurrent79%(activematerialsat50%)to80-85%(activematerialsat55-60%)by2030toreachabreak-evenbusinessmodel
十
EUROBAT9
BATTERYINNOVATIONROADMAP2030
A.3.Sodium-basedbatteries
Na
State-of-the-art
Incontrasttootherbatterytypes,high-temperaturebatteriesconsistofliquid-electrodesandasolidelectrolyte,usuallyanion-conducting(e.g.Na+)ceramic.Thesebatteriesrequirerelativelyhighoperatingtemperaturesof>300°Ctokeepthesodium-basedelectrodeintheliquidstateandtoincreasetheconductivityofthesolidelectrolyte.
Commerciallyavailablerepresentativesaresodiumnickelchloride(NaNiCl),alsoknownasthe‘Zebra’battery(ZeroEmissionBatteryResearchActivities),andthesodium-sulfurbattery(NaS).
Sodiumnickelchloridebatteries:Thecathodemainlyconsistsofaporousnickelmatrixasacurrentconductorwithnickelchloride(NiCl2),whichisimpregnatedwithsodiumaluminumchloride(NaAlCl4).Theanodeismadeofsodium.Ceramicβ-aluminumoxideisusedastheseparatorandelectrolyte,butthesodiumionsdonotallowelectronstopassbetweentheanodeandcathode.Theoperatingtemperatureofthistypeofbatteryisbetween270°Cand350°Csothattheelectrodes(activematerial)areintheliquidstate(melted)andtheceramicseparatorachieveshighconductivityforsodiumions.Thespecificenergyofthecellsisapproximately120Wh/kgatanominalvoltageof2.3Vto2.6V.Advantagesoverthesodium-sulfurbatteryaretheinversestructurewithliquidsodiumontheoutside,whichallowstheuseofinexpensiverectangularsteelhousingsinsteadofcylindricalnickelcontainers.Theassemblyissimplifiedinthatthebatterymaterialscanbeusedintheunchargedstateassodiumchlorideandnickel,andthechargedactivematerialsareonlygeneratedinthefirstchargingcycle.Sodiumnickelchloridebatteriesareusedinsmallseriesofelectricvehiclesinfleetsandforstationarystorageapplications.
Sodium-sulfur(NaS)batteries:Thecellsconsistofananodemadeofmoltensodiumandacathodemadeofgraphitefabricsoakedwithliquidsulfurinordertoachieveelectricalconductivity,assulfurisaninsulator.AsinthecaseoftheNaNiClbattery,thesolidelectrolyteβ-aluminumoxideisusedastheelectrolyte,whichbecomesconductiveforNa+ionsaboveatemperatureofapprox.300°C.Theoptimumtemperaturerangeisbetween300°Cand340°C.Duringthedischargeprocess,positivelychargedsodiumionsenterthesolidelectrolytefromtheliquidsodium,releasingelectrons.Thesodiumionsmigratethroughtheelectrolytetothepositiveelectrode,wheretheyformsodiumpolysulphides.Thecellvoltageis2V.Thisprocessisreversedduringcharging.Amajoradvantageofthesodium-sulfurbatteryisthattheinternalresistanceofthecellisalmostindependentofthestateofcharge.Itonlyrisessharplytowardstheendofthechargebecausethereisadecreaseinsodiumionsintheelectrolyte.
Therequiredoperatingtemperatureismaintainedinnormaloperationbythepowerdissipationofthecellsthemselves;instand-byoperationitisachievedbyanadditionalelectricheater,whichincreasesthebattery’sownconsumption.
TheNaSbatteryhasavolumetricenergydensityofabout367Wh/landgravimetricenergydensityof222Wh/kg.Oneadvantageofthisbatteryisthehighcyclestabilityofover4,500cyclesandalongcalendarlifeofover15years.Thetechnologyhasbeencommercialisingsince2002,mainlyforlargescalestoragewithmorethan1MWhofenergy.
NaNiClandNaSbatterieshaveaservicelifeofaround4,500cyclesandanefficiencyof75%to86%.Ifnecessary,thermallossesduetoheatingnecessarytomaintainthecelltemperaturemustbetakenintoaccount,iftherearelongerperiodsoftimebetweencharginganddischarging.Thiscanbeinfluencedwithincertainlimitsthroughacorrespondingeffortinthermalinsulation.
Environmentalandcirculareconomytargets
NaNiClbatteryproductionisrelativelyenergy-intensiveandthereforehasthehighestshareofenvironmentalimpact(dependingontheheatsupplysource).Otherfactorsarethehighdemandfornickelandthecomplexmodularconstruction(insulation).Thenickelcontentinthebatterycanberecovered,whichcanbeusedinthesteelindustry.Theceramiccontentinthecells,aswellasthesaltcollectedintheresultingslag,canbeusedinroadconstruction.Regardingthemanufacturingprocess,theproductionoftheβ-aluminumoxidesolidelectrolyteisconsideredtobeenergy-intensive.NaSbatteriesalsocontainlargeproportionsofsteelandaluminum,whichcanberecycledaccordingly,leadingtoareductioninthepossibleenvironmentalimpact.
十
10EUROBAT
BATTERYINNOVATIONROADMAP2030
B.
Futurebatterytechnologiesandtheirpotential
Intheframeoffurtherimprovementsinperformancerequirementsofbatteriesinreallifeapplicationsanddrivenbydurability,safety,sustainabilityandaffordability,industryexpertshavereachedconsensusonwhichpromisingfuturetechnologiestoconsiderinthecurrentroadmap.Withsustainabilityasakeydriverwiththepurposeofproducingbatteriesatthelowestpossibleenvironmentalimpact,materialsthathavebeenobtainedinfullrespectofsocialandecologicalstandards,arelonglastingandsafe,andthatcanberepaired,reusedorpotentiallyrepurposedshouldbeused.Inthissensetheessentialelectrochemicalstoragesystemsidentifiedarelistedhereunder.
B.1.Leadbipolarbatterytechnology
Whilebipolarandmonopolardesignssharethesamelead-basedchemistry,theydifferinthatinbipolarbatteries,thecellsarestackedinasandwichconstructionsothatthenegativeplateofonecellbecomesthepositiveplateofthenextcell.Thecellsareseparatedfromeachotherbythebipolarplate,whichallowseachcelltooperateinisolationfromitsneighbour.Stackingthesecellsnexttooneanother(figurehereunder)allowsthepotentialofthebatterytobebuiltupin2Vincrements.Sincethecellwallbecomestheconnectionelementbetweencells,bipolarplateshaveashortercurrentpathandalargersurfaceareacomparedtoconnectionsinconventionalcells.Thisconstructionreducesthepowerlossthatisnormallycausedbytheinternalresistanceofthecells.Ateachendofthestack,singleplatesactasthe?nalanodeandcathode.Thissimplerconstructionleadstoreducedweightsincetherearefewerplatesandbusbarsarenotneededtojoincellstogether.Thenetresultisabatterydesignwithhigherpowerthanconventionalmonopolarlead-basedbatteries.
Figure:Bipolardesign-thecellsarestackedinasandwichconstruction
Untilrecently,themainproblemlimitingthecommercialisationofbipolarlead-acidbatterieswastheavailabilityofalightweight,inexpensiveandcorrosionresistantmaterialforthebipolarplate,andthetechnologytoproperlysealeachcellagainstelectrolyteleakage.
Architecturaladvantagesare:
?Directcurrentpath=lowimpedance
?Uniformcurrentdensity=highmaterialutilisation
?Thinactivematerialandseparator=highpower
?Pb-Bipolartechnology=increasedenergydensity:50–63Wh/kg
十
EUROBAT11
BATTERYINNOVATIONROADMAP2030
B.2.Sodium-ionroomtemperaturebatteries
Incomparisontothestate-of-the-arthightemperaturesodiumbatteries,theupcomingnewsodium-ionbatterytechnologyisoperatingatroomtemperature.Thesodium-ionbatteryhasasimilarworkingprincipletotheLi-ionbattery.Sodiumionsalsoshuttlebetweenthecathodeandtheanodetostoreandreleaseenergy.AssodiumresourcesarecheapandwidelydistributedandconsideringthetechnologicalsimilaritieswithexistingLi-ionbatteries,theindustrialisationprocessofsodium-ionbatterieswillbeaccelerated.
Forcathodematerials,themostimportantpartofsodium-ionbatteries,Prussianblueanalogue,layeredmetaloxides,andNASICON(sodium(Na)SuperIonicConductor),eachhasitsownadvantagesindifferentaspects.
Basedonpotentialapplicationscenarios,higherenergydensity,longercyclelifeandbetterlowtemperatureperformancearethemostcriticalindicators.Intotal,thecostandsafetyadvantagesofsodiumbatterieswillgraduallygaininprominence.Therefore,itislikelythatsodium-ionbatterieswillbeusedastractionbatteriesintwo-wheeledvehicles,suchase-scooters,12Vstarterapplications,A0andA00passengervehiclesforA-levelEVcharging,andelectricalenergystorage(EES),asaneffectivesupplementtoLi-ionbatteries.
Thespecificcapacitiesofanodeandcathodematerialsare:
Anode:
?C:300-500mAh/g
?Sn:500-1,000mAh/g
Cathode:
?PrussianBlueAnalogue:120-160mAh/g
?LayeredMetalOxide:100-180mAh/g
?NASICON:100-140mAh/g
Sodium-basedbatterycirculareconomytargets
Recyclingtargetsforsodium-ionbatterieswillbemaintainedatthecurrentlevelof50%,butactivematerialrecyclingisexpectedtoincreasefrom50%to90%by2030.
Generationsofsodiummaterialsconsideredforfurtherdevelopmentby2030are:
State-of-the-art
NaS,NaNiCl
>2023
Na-ion(RT)
>2025
HighEnergyDensityNa-ion(RT)
>2030
AllSolidState
Sodiumbasedtechnologies-keyperformanceparametersforstate-of-the-artin2023andtargetsfor2030:
Sodium-ion2023
Sodium-ion2030
RecyclingRate(%)
50
90
CalendricLife(years)
15
30
EnergyThroughput(FCE)
4000
6,000-12,000
FastRechargeTime(min)
30
5
VolumetricPowerDensity(W/l)
500
600-850
GravimetricPowerDensity(W/kg)
300
380-700
VolumetricEnergyDensity(Wh/l)
310
350-700
GravimetricEnergyDensity(Wh/kg)
160
200-450
十
12EUROBAT
BATTERYINNOVATIONROADMAP2030
B.3.PostLi-ionbatterytechnologies
Inexpensiveandenvironmentallyfriendlymetalssuchassodiumandpolyvalentlightmetalsshouldonedayreplacelithiumbatterytechnologies.Amajorchallenge,however,isthedevelopmentofdurableandstableelectrodeswithhighenergydensityand,atthesametime,fastcharginganddischargingrates.
LithiumTechnologyRoadmap
Figures:LithiumtechnologyRoadmap(>2025):Gen.3.advancedLi-Ion;Gen.4.Solid-state;Gen.5post-Li-ion
Lithiumall-solid-state(Gen.4)
Solidstatebatteriesuseanelectrolytemadeofsolidmaterialinsteadoftheusualliquidelectrolyte.Theelectrodesarealsomadeofsolidmaterial.Withsolidstatebatteries,thereisthepossibilitythatpartofthesolidelectrolytecanbeincorporatedintotheelectrodes.Forexample,lithiummetalanodescanalsobeused,whichfurtherimproveperformance.Themainadvantagesoffuturesolidstatebatteriesarethattheenergydensityofthecellswillincreasesigni?cantlyinthefutureandtheriskof?rewillalsodecreaseduetothelesspronouncedflammabilityo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準食品采購合同范本
- 2025商業店鋪租賃合同簡易范本
- 2025年通信基站維護協議先例文本
- 數一數(第二課時)(教案)-一年級上冊數學滬教版
- 2025中學助學金借款合同補充協議
- 2024年內蒙古鴻德文理學院招聘教師真題
- 2024年樂山市市屬事業單位考試真題
- 2024年杭州市老年病醫院招聘工作人員真題
- 2024年安徽馬鋼技師學院專任教師招聘真題
- 煤灰水泥出售合同范本
- GB/T 7113.5-2011絕緣軟管第5部分:硅橡膠玻璃纖維軟管
- 勞動者權益維護培訓講義課件
- 六年級隨遷子女幫扶記錄
- 【課件】第4課 畫外之意-中國傳統花鳥畫、人物畫 課件-2022-2023學年高中美術人教版(2019)美術鑒賞
- 2022年牡丹江中考英語真題打印版
- 《陳情表》原文及翻譯注釋
- DB32∕T 3921-2020 居住建筑浮筑樓板保溫隔聲工程技術規程
- SAPERP_委外業務操作手冊_v1.0
- 現代住宅風水全解(含文字及圖解)(課堂PPT)
- 2022年上海公務員考試信息管理類專業真題
- Q∕GDW 12131-2021 干擾源用戶接入電網電能質量評估技術規范
評論
0/150
提交評論