阜新高等專科學(xué)校《Hadoop綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
阜新高等專科學(xué)校《Hadoop綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
阜新高等專科學(xué)校《Hadoop綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
阜新高等專科學(xué)校《Hadoop綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
阜新高等專科學(xué)校《Hadoop綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)阜新高等專科學(xué)校

《Hadoop綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對(duì)于一個(gè)具有分類和數(shù)值型特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)處理,以下哪些步驟可能會(huì)被包括?()A.編碼分類特征B.處理異常值C.標(biāo)準(zhǔn)化數(shù)值型特征D.以上都是2、在數(shù)據(jù)分析過(guò)程中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵步驟。以下關(guān)于數(shù)據(jù)清洗的目的,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性3、對(duì)于數(shù)據(jù)分析中的文本情感分析,假設(shè)要分析大量的產(chǎn)品評(píng)論,判斷其是正面、負(fù)面還是中性情感。以下哪種方法在處理自然語(yǔ)言的情感傾向時(shí)可能更有效?()A.使用情感詞典,匹配關(guān)鍵詞B.基于機(jī)器學(xué)習(xí)的分類模型C.深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)D.人工閱讀和判斷每條評(píng)論的情感4、數(shù)據(jù)分析中的抽樣方法用于從總體中選取部分樣本進(jìn)行分析。假設(shè)我們要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行抽樣。以下關(guān)于抽樣方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.簡(jiǎn)單隨機(jī)抽樣每個(gè)樣本被選中的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣效率高,但可能導(dǎo)致樣本的偏差D.抽樣方法對(duì)數(shù)據(jù)分析的結(jié)果沒(méi)有影響,任何抽樣方法都可以使用5、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級(jí)的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測(cè)C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對(duì)于普通用戶來(lái)說(shuō)難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無(wú)誤的,可以直接用于決策6、對(duì)于一個(gè)包含大量重復(fù)數(shù)據(jù)的數(shù)據(jù)表,以下哪種操作可以有效地減少數(shù)據(jù)存儲(chǔ)空間?()A.建立索引B.數(shù)據(jù)壓縮C.數(shù)據(jù)分區(qū)D.數(shù)據(jù)清理7、在數(shù)據(jù)分析中,生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)要分析患者的生存時(shí)間與治療方案的關(guān)系,以下關(guān)于生存分析的描述,哪一項(xiàng)是不正確的?()A.可以計(jì)算生存曲線來(lái)直觀展示不同組患者的生存情況B.風(fēng)險(xiǎn)比(HazardRatio)用于比較不同組的風(fēng)險(xiǎn)程度C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒(méi)有應(yīng)用價(jià)值D.考慮刪失數(shù)據(jù)是生存分析的一個(gè)重要特點(diǎn)8、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過(guò)多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)分析方法有效性評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過(guò)與實(shí)際情況進(jìn)行對(duì)比來(lái)評(píng)估B.數(shù)據(jù)分析方法的有效性可以通過(guò)與其他方法進(jìn)行比較來(lái)評(píng)估C.數(shù)據(jù)分析方法的有效性可以通過(guò)模擬數(shù)據(jù)進(jìn)行測(cè)試來(lái)評(píng)估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)9、對(duì)于一個(gè)分類問(wèn)題,若訓(xùn)練集的準(zhǔn)確率很高,但測(cè)試集的準(zhǔn)確率很低,可能的原因是?()A.模型過(guò)擬合B.模型欠擬合C.數(shù)據(jù)有偏差D.特征選擇不當(dāng)10、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)隱私和安全是需要重點(diǎn)關(guān)注的問(wèn)題。假設(shè)我們?cè)谔幚戆瑐€(gè)人敏感信息的數(shù)據(jù),以下哪種措施可以有效地保護(hù)數(shù)據(jù)隱私?()A.數(shù)據(jù)加密B.匿名化處理C.訪問(wèn)控制D.以上都是11、在數(shù)據(jù)分析中,特征工程用于從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要對(duì)文本數(shù)據(jù)進(jìn)行特征工程,以下關(guān)于特征工程的描述,哪一項(xiàng)是不正確的?()A.可以使用詞頻-逆文檔頻率(TF-IDF)來(lái)衡量單詞在文本中的重要性B.詞嵌入技術(shù),如Word2Vec,可以將單詞表示為低維向量C.特征工程只需要考慮數(shù)據(jù)的數(shù)值特征,對(duì)于文本等非數(shù)值特征不需要處理D.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能12、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),例如分析超市購(gòu)物籃中的商品組合。假設(shè)發(fā)現(xiàn)購(gòu)買面包的顧客往往也會(huì)購(gòu)買牛奶,這種關(guān)聯(lián)規(guī)則具有較高的支持度和置信度。這對(duì)超市的營(yíng)銷策略可能有什么啟示?()A.可以將面包和牛奶放在相鄰的貨架上,方便顧客購(gòu)買B.降低面包或牛奶的價(jià)格,以促進(jìn)銷售C.減少面包或牛奶的庫(kù)存,避免積壓D.這種關(guān)聯(lián)對(duì)營(yíng)銷策略沒(méi)有實(shí)際意義13、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的14、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過(guò)程。假設(shè)一家電商企業(yè)想要通過(guò)數(shù)據(jù)挖掘來(lái)發(fā)現(xiàn)客戶的購(gòu)買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.預(yù)測(cè)分析15、在處理文本數(shù)據(jù)時(shí),除了常見(jiàn)的英文文本,還可能涉及到其他語(yǔ)言。假設(shè)我們要分析中文文本,以下哪個(gè)步驟在中文文本處理中可能與英文文本處理有所不同?()A.分詞B.詞干提取C.停用詞處理D.以上都是16、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的考試成績(jī),以下哪種假設(shè)檢驗(yàn)方法可能適用?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)17、時(shí)間序列分析用于研究數(shù)據(jù)隨時(shí)間的變化規(guī)律。假設(shè)要預(yù)測(cè)未來(lái)幾個(gè)月的股票價(jià)格走勢(shì),以下關(guān)于時(shí)間序列分析方法選擇的描述,正確的是:()A.僅僅使用簡(jiǎn)單移動(dòng)平均法,不考慮其他更復(fù)雜的模型B.隨意選擇一種時(shí)間序列模型,不進(jìn)行數(shù)據(jù)的平穩(wěn)性檢驗(yàn)和模型評(píng)估C.對(duì)數(shù)據(jù)進(jìn)行平穩(wěn)性檢驗(yàn)和預(yù)處理,根據(jù)數(shù)據(jù)特點(diǎn)和預(yù)測(cè)需求選擇合適的模型,如ARIMA模型,并進(jìn)行模型評(píng)估和參數(shù)調(diào)整D.不考慮外部因素對(duì)股票價(jià)格的影響,僅基于歷史數(shù)據(jù)進(jìn)行預(yù)測(cè)18、假設(shè)要為一家電商企業(yè)進(jìn)行銷售數(shù)據(jù)分析,以預(yù)測(cè)未來(lái)一段時(shí)間內(nèi)的銷售額。數(shù)據(jù)集涵蓋了不同產(chǎn)品類別、銷售地區(qū)、銷售時(shí)間等多個(gè)變量。在這種情況下,為了提高預(yù)測(cè)的準(zhǔn)確性,以下哪個(gè)步驟可能是至關(guān)重要的?()A.數(shù)據(jù)清洗和預(yù)處理B.選擇合適的預(yù)測(cè)模型C.對(duì)模型進(jìn)行超參數(shù)調(diào)優(yōu)D.以上都是19、在數(shù)據(jù)分析的過(guò)程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了獲得高質(zhì)量的數(shù)據(jù)用于后續(xù)分析,以下哪種數(shù)據(jù)清洗方法是首先應(yīng)該考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則修正錯(cuò)誤數(shù)據(jù)D.利用機(jī)器學(xué)習(xí)算法預(yù)測(cè)缺失值20、在數(shù)據(jù)分析中,模型評(píng)估不僅要看準(zhǔn)確率等指標(biāo),還要考慮模型的可解釋性。假設(shè)要解釋一個(gè)決策樹(shù)模型的決策過(guò)程,以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)查看決策樹(shù)的結(jié)構(gòu)和節(jié)點(diǎn)的分裂條件來(lái)理解模型的決策邏輯B.特征重要性評(píng)估可以幫助確定哪些特征對(duì)模型的決策影響較大C.模型的可解釋性只對(duì)簡(jiǎn)單模型如決策樹(shù)重要,對(duì)于復(fù)雜模型如深度學(xué)習(xí)模型不重要D.向業(yè)務(wù)人員和決策者解釋模型的決策過(guò)程,有助于增強(qiáng)對(duì)模型的信任和應(yīng)用二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在處理地理空間數(shù)據(jù)時(shí),常用的分析方法和技術(shù)有哪些?解釋空間聚類、緩沖區(qū)分析等概念,并舉例說(shuō)明應(yīng)用。2、(本題5分)解釋什么是遷移學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用,說(shuō)明其優(yōu)勢(shì)和適用場(chǎng)景,并舉例分析。3、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的物化視圖的概念和作用,說(shuō)明在什么情況下使用物化視圖來(lái)提高查詢性能,并舉例說(shuō)明。4、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何選擇合適的數(shù)據(jù)存儲(chǔ)格式?請(qǐng)考慮數(shù)據(jù)量、讀寫性能、數(shù)據(jù)結(jié)構(gòu)等因素,并舉例說(shuō)明。5、(本題5分)簡(jiǎn)述數(shù)據(jù)可視化中的地圖可視化,包括地理信息系統(tǒng)(GIS)的應(yīng)用、熱力圖等,說(shuō)明其在數(shù)據(jù)分析中的作用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某金融公司擁有客戶的信用記錄、貸款金額、還款情況等數(shù)據(jù)。分析客戶的信用風(fēng)險(xiǎn),構(gòu)建信用評(píng)估模型,以降低貸款違約率。2、(本題5分)某在線教育平臺(tái)記錄了學(xué)生的學(xué)習(xí)課程、學(xué)習(xí)時(shí)長(zhǎng)、作業(yè)完成情況、考試成績(jī)等數(shù)據(jù)。思考如何通過(guò)這些數(shù)據(jù)發(fā)現(xiàn)學(xué)生的學(xué)習(xí)模式和問(wèn)題,優(yōu)化教學(xué)內(nèi)容和方法。3、(本題5分)一家餐飲企業(yè)擁有各門店的菜品銷售數(shù)據(jù)、顧客評(píng)價(jià)、營(yíng)業(yè)時(shí)間段數(shù)據(jù)。分析不同門店的菜品受歡迎程度和營(yíng)業(yè)高峰時(shí)段,優(yōu)化菜單和人員配置。4、(本題5分)某在線油畫(huà)教學(xué)平臺(tái)收集了學(xué)員作品數(shù)據(jù)、色彩運(yùn)用技巧掌握情況、畫(huà)布材質(zhì)需求等。改進(jìn)油畫(huà)教學(xué)內(nèi)容和材料供應(yīng)。5、(本題5分)某旅游預(yù)訂平臺(tái)收集了用戶的行程變更數(shù)據(jù)、特殊需求、目的地天氣變化等。研究怎樣借助這些數(shù)據(jù)提供更貼心的應(yīng)急服務(wù)和行程調(diào)整建議。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在社交電商領(lǐng)域,用戶的社交關(guān)系數(shù)據(jù)、購(gòu)物分享數(shù)據(jù)等逐漸增多。分析如何借助數(shù)據(jù)分析手段,如社交影響力評(píng)估、商品推薦優(yōu)化等,促進(jìn)社交電商的發(fā)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論