2024屆吉林大學附屬中學高三第九次模擬數學試題試卷_第1頁
2024屆吉林大學附屬中學高三第九次模擬數學試題試卷_第2頁
2024屆吉林大學附屬中學高三第九次模擬數學試題試卷_第3頁
2024屆吉林大學附屬中學高三第九次模擬數學試題試卷_第4頁
2024屆吉林大學附屬中學高三第九次模擬數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆吉林大學附屬中學高三第九次模擬數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.2.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.3.已知函數,其中,記函數滿足條件:為事件,則事件發生的概率為A. B.C. D.4.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.85.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.6.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)7.復數的共軛復數在復平面內所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.9.已知,則()A.2 B. C. D.310.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.11.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.12.為了加強“精準扶貧”,實現偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.64二、填空題:本題共4小題,每小題5分,共20分。13.六位同學坐在一排,現讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數字回答).14.不等式對于定義域內的任意恒成立,則的取值范圍為__________.15.在數列中,已知,則數列的的前項和為__________.16.已知數列的前項滿足,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.18.(12分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.19.(12分)“綠水青山就是金山銀山”,為推廣生態環境保護意識,高二一班組織了環境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現要從這人的兩個興趣小組中抽出人參加學校的環保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發生的概率;(2)用表示抽取的人中乙組女生的人數,求隨機變量的分布列和期望20.(12分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.21.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.22.(10分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.2.D【解析】

由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯立①②得,聯立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.3.D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.4.B【解析】

根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.5.D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.6.C【解析】

首先判斷出為假命題、為真命題,然后結合含有簡單邏輯聯結詞命題的真假性,判斷出正確選項.【詳解】根據線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內,命題為假命題;根據線面垂直的定義,我們易得命題若直線平面,則若直線與平面內的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點睛】本小題主要考查線面平行與垂直有關命題真假性的判斷,考查含有簡單邏輯聯結詞的命題的真假性判斷,屬于基礎題.7.D【解析】

由復數除法運算求出,再寫出其共軛復數,得共軛復數對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.【點睛】本題考查復數的除法運算,考查共軛復數的概念,考查復數的幾何意義.掌握復數的運算法則是解題關鍵.8.D【解析】

根據為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.9.A【解析】

利用分段函數的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數值的求法,考查對數的運算和對數函數的性質,是基礎題,解題時注意函數性質的合理應用.10.B【解析】

由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為011.C【解析】

根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.12.B【解析】

根據題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數學文化,還考查數學建模能力以及分類討論思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.135【解析】

根據題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.14.【解析】

根據題意,分離參數,轉化為只對于內的任意恒成立,令,則只需在定義域內即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內的任意恒成立,即對于內的任意恒成立,令,則只需在定義域內即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數研究函數單調性和最值,解決恒成立問題求參數值,涉及分離參數法和放縮法,考查轉化能力和計算能力.15.【解析】

由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.16.【解析】

由已知寫出用代替的等式,兩式相減后可得結論,同時要注意的求解方法.【詳解】∵①,∴時,②,①-②得,∴,又,∴().故答案為:.【點睛】本題考查求數列通項公式,由已知條件.類比已知求的解題方法求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數為為,求解不等式可得實數a的取值范圍為試題解析:(I)當時,化為,當時,不等式化為,無解;當時,不等式化為,解得;當時,不等式化為,解得.所以的解集為.(II)由題設可得,所以函數的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設得,故.所以a的取值范圍為18.(1)(2)見解析【解析】

(1)設,求出后由二次函數知識得最小值,從而得,即得橢圓方程;(2)設直線的方程為,代入橢圓方程整理,設,由韋達定理得,設,利用三點共線,求得,然后驗證即可.【詳解】解:(1)設,則,所以,因為.所以當時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設直線的方程為,聯立,得.設,則,設,因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設而不求思想,設,設直線方程,應用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.19.(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點睛】本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.20.(1)證明見解析,是,,,,;(2)【解析】

(1)根據是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標系,設,由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式求解.【詳解】(1)因為是球的直徑,則,又平面,∴,.∴平面,∴,∴平面.根據證明可知,四面體是鱉臑.它的每個面的直角分別是,,,.(2)如圖,以A為原點,,,所在直線為x,y,z軸建立直角坐標系,則,,,,.M為中點,從而.所以,設,則.由,得.由得,即.所以.設平面的一個法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【點睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.21.(1)或.(2)存在,;【解析】

(1)根據動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設,由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設,可得圓的半徑為,根據,可得方程為并化簡可得的軌跡方程為.設,,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論