




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省龍巖市長汀縣新橋中學2023-2024學年高三下學期3月模擬考試數學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-22.若復數是純虛數,則實數的值為()A.或 B. C. D.或3.己知集合,,則()A. B. C. D.4.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.5.已知,,若,則向量在向量方向的投影為()A. B. C. D.6.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.7.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.8.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.9.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.10.要得到函數的導函數的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍11.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.12.已知函數,若,則下列不等關系正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數與的圖象上存在關于軸對稱的點,則的取值范圍為_____.14.曲線y=e-5x+2在點(0,3)處的切線方程為________.15.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.16.已知數列為等比數列,,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.18.(12分)已知函數.(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.19.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.20.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).22.(10分)已知函數.(1)討論函數的極值;(2)記關于的方程的兩根分別為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求出,對分類討論,求出單調區間和極值點,結合三次函數的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.【點睛】本題考查函數的零點、導數的應用,考查分類討論思想,熟練掌握函數圖像和性質是解題的關鍵,屬于中檔題.2、C【解析】試題分析:因為復數是純虛數,所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數3、C【解析】
先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎題.4、D【解析】
設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.5、B【解析】
由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題6、D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.7、C【解析】
設過點作圓的切線的切點為,根據切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.8、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.9、A【解析】
作于,于,分析可得,,再根據正弦的大小關系判斷分析得,再根據線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據題意確定角度的正弦的關系,同時運用線面角的最小性進行判定.屬于中檔題.10、D【解析】
先求得,再根據三角函數圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復合函數導數的計算,考查誘導公式,考查三角函數圖像變換,屬于基礎題.11、A【解析】
先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養.12、B【解析】
利用函數的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數的單調性、不等式性質的運用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
兩函數圖象上存在關于軸對稱的點的等價命題是方程在區間上有解,化簡方程在區間上有解,構造函數,求導,求出單調區間,利用函數性質得解.【詳解】解:根據題意,若函數與的圖象上存在關于軸對稱的點,則方程在區間上有解,即方程在區間上有解,設函數,其導數,又由,可得:當時,為減函數,當時,為增函數,故函數有最小值,又由;比較可得:,故函數有最大值,故函數在區間上的值域為;若方程在區間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數研究函數在某區間上最值求參數的問題,函數零點問題的拓展.由于函數的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉化為函數問題解決.此類問題的切入點是借助函數的零點,結合函數的圖象,采用數形結合思想加以解決.14、.【解析】
先利用導數求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數的幾何意義和函數的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數在點處的導數是曲線在處的切線的斜率,相應的切線方程是15、16.【解析】由題意可知拋物線的焦點,準線為設直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯立,消去得設點由跟與系數的關系得,同理∵根據拋物線的性質,拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關的最值問題,一般情況下都與拋物線的定義有關.利用定義可將拋物線上的點到焦點的距離轉化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.16、81【解析】
設數列的公比為,利用等比數列通項公式求出,代入等比數列通項公式即可求解.【詳解】設數列的公比為,由題意知,因為,由等比數列通項公式可得,,解得,由等比數列通項公式可得,.故答案為:【點睛】本題考查等比數列通項公式;考查運算求解能力;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值.【解析】
(1)根據通徑和即可求(2)設直線方程為,聯立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設直線的方程為,聯立,得.所以,.所以.令,則,所以,因,則,所以,當且僅當,即時取得等號,即四邊形面積的最大值.【點睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.18、(1)或;(2).【解析】
(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數的單調性可得的最小值,通過恒成立問題,得到關于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據函數的單調性可知函數的最小值為,因為恒成立,所以,解得.所以實數的取值范圍是.【點睛】本題考查分類討論去絕對值,分段函數求最值,不等式恒成立問題,屬于中檔題.19、(1)①函數與的圖象在區間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數在和上單調遞增,又函數在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數的范圍是且.【點睛】本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.20、(1)見解析(2)【解析】
(1)推導出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標原點,建立如圖所示空間坐標系,設,利用空間向量法表示出二面角的余弦值,當余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標原點,建立如圖所示空間坐標系,則,設,則平面的一個法向量為設平面的一個法向量為則,即,令,如圖二面角的平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年幼兒園上年工作方案
- 高三下學期《好心態、好狀態》主題班會課件
- 2025年電子視力測量儀項目可行性研究報告
- 閱讀區自制圖書教案
- 2025年玻璃卡項目可行性研究報告
- 2025年特氟龍加熱器項目可行性研究報告
- 2025年燃煤添加劑項目可行性研究報告
- 上海財大北郊高級中學2025年高三下學期期末復習檢測試題(一模)數學試題含解析
- 長江藝術工程職業學院《體育舞蹈理論與實踐Ⅰ》2023-2024學年第一學期期末試卷
- 鄭州食品工程職業學院《私教實踐指導》2023-2024學年第二學期期末試卷
- 實驗六.二組分金屬相圖
- 汽車發動機氣缸體氣缸蓋平面度測量教學實訓任務
- 教學課件:《數據結構》陳越
- 梁長虹解讀碘對比劑使用指南第二(呼和浩特)
- 電壓互感器課件
- 口腔檢查-口腔一般檢查方法(口腔科課件)
- 畜禽養殖場排查情況記錄表
- 2023年高考全國甲卷數學(理)試卷【含答案】
- 弗雷德里克 桑格
- 淺談初中數學單元整體教學的實踐 論文
- 歷史時期的地貌變遷優秀課件
評論
0/150
提交評論