寧夏銀川十五中重點達標名校2024屆畢業升學考試模擬卷數學卷含解析_第1頁
寧夏銀川十五中重點達標名校2024屆畢業升學考試模擬卷數學卷含解析_第2頁
寧夏銀川十五中重點達標名校2024屆畢業升學考試模擬卷數學卷含解析_第3頁
寧夏銀川十五中重點達標名校2024屆畢業升學考試模擬卷數學卷含解析_第4頁
寧夏銀川十五中重點達標名校2024屆畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寧夏銀川十五中重點達標名校2024屆畢業升學考試模擬卷數學卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.22.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐3.如圖,點從矩形的頂點出發,沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數關系圖象,則矩形的面積為()A. B. C. D.4.下列圖形是中心對稱圖形的是()A. B. C. D.5.如圖,已知數軸上的點A、B表示的實數分別為a,b,那么下列等式成立的是()A. B.C. D.6.如圖是二次函數的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>57.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數為A.80° B.50° C.30° D.20°8.“嫦娥一號”衛星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數用科學記數法可以表示為A. B. C. D.9.下列左圖表示一個由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小立方塊的個數,則該幾何體的主視圖為()A. B. C. D.10.如圖,水平的講臺上放置的圓柱體筆筒和正方體粉筆盒,其左視圖是()A. B.C. D.11.已知二次函數y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=012.衡陽市某生態示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為x萬千克,根據題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖△ABC中,AB=AC=8,∠BAC=30°,現將△ABC繞點A逆時針旋轉30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.14.小明擲一枚均勻的骰子,骰子的六個面上分別刻有1,2,3,4,5,6點,得到的點數為奇數的概率是.15.已知x+y=,xy=,則x2y+xy2的值為____.16.若3,a,4,5的眾數是4,則這組數據的平均數是_____.17.因式分解:x3﹣4x=_____.18.關于x的一元二次方程x2+4x﹣k=0有實數根,則k的取值范圍是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解方程.20.(6分)如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角,求樹高AB(結果保留根號).21.(6分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統計圖,請你根據統計圖的信息回答下列問題:(1)本次調查的學生總數為_____人,被調查學生的課外閱讀時間的中位數是_____小時,眾數是_____小時;并補全條形統計圖;(2)在扇形統計圖中,課外閱讀時間為5小時的扇形的圓心角度數是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?22.(8分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.23.(8分)已知,拋物線L:y=x2+bx+c與x軸交于點A和點B(-3,0),與y軸交于點C(0,3).(1)求拋物線L的頂點坐標和A點坐標.(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點與拋物線L的頂點關于原點對稱?(3)將拋物線L平移,使其經過點C得到拋物線L2,點P(m,n)(m>0)是拋物線L2上的一點,是否存在點P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達式,若不存在,請說明理由.24.(10分)已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實數m,使得點P(m,m)在該拋物線上,我們稱點P(m,m)是這個拋物線上的一個“和諧點”.(1)當a=2,b=1時,求該拋物線的“和諧點”;(2)若對于任意實數b,拋物線上恒有兩個不同的“和諧點”A、B.①求實數a的取值范圍;②若點A,B關于直線y=﹣x﹣(+1)對稱,求實數b的最小值.25.(10分)如圖1,正方形ABCD的邊長為8,動點E從點D出發,在線段DC上運動,同時點F從點B出發,以相同的速度沿射線AB方向運動,當點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數據:sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數量關系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.26.(12分)在平面直角坐標系xOy中有不重合的兩個點與.若Q、P為某個直角三角形的兩個銳角頂點,當該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”記做,特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”.例如下圖中,點,點,此時點Q與點P之間的“直距”.(1)①已知O為坐標原點,點,,則_________,_________;②點C在直線上,求出的最小值;(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線上一動點.直接寫出點E與點F之間“直距”的最小值.27.(12分)(操作發現)(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.①求∠EAF的度數;②DE與EF相等嗎?請說明理由;(類比探究)(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.請直接寫出探究結果:①∠EAF的度數;②線段AE,ED,DB之間的數量關系.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:先根據折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.2、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂的圓心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.3、C【解析】

由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,根據矩形的面積公式可求出.【詳解】由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【點睛】本題考查動點運動問題、矩形面積等知識,根據圖形理解△ABP面積變化情況是解題的關鍵,屬于中考常考題型.4、B【解析】

根據中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!5、B【解析】

根據圖示,可得:b<0<a,|b|>|a|,據此判斷即可.【詳解】∵b<0<a,|b|>|a|,

∴a+b<0,

∴|a+b|=-a-b.

故選B.【點睛】此題主要考查了實數與數軸的特征和應用,以及絕對值的含義和求法,要熟練掌握.6、D【解析】利用二次函數的對稱性,可得出圖象與x軸的另一個交點坐標,結合圖象可得出的解集:由圖象得:對稱軸是x=2,其中一個點的坐標為(1,0),∴圖象與x軸的另一個交點坐標為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.7、D【解析】試題分析:根據平行線的性質,得∠4=∠2=50°,再根據三角形的外角的性質∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質;三角形的外角的性質.8、C【解析】分析:一個絕對值大于10的數可以表示為的形式,其中為整數.確定的值時,整數位數減去1即可.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:1800000這個數用科學記數法可以表示為故選C.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.9、B【解析】

由俯視圖所標該位置上小立方塊的個數可知,左側一列有2層,右側一列有1層.【詳解】根據俯視圖中的每個數字是該位置小立方塊的個數,得出主視圖有2列,從左到右的列數分別是2,1.故選B.【點睛】此題考查了三視圖判斷幾何體,用到的知識點是俯視圖、主視圖,關鍵是根據三種視圖之間的關系以及視圖和實物之間的關系.10、C【解析】

根據左視圖是從物體的左面看得到的視圖解答即可.【詳解】解:水平的講臺上放置的圓柱形筆筒和正方體形粉筆盒,其左視圖是一個含虛線的長方形,故選C.【點睛】本題考查的是幾何體的三視圖,左視圖是從物體的左面看得到的視圖.11、D【解析】

拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據根與系數的關系把AB的長度用b、c表示,而S△APB=1,然后根據三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.12、A【解析】

根據題意可得等量關系:原計劃種植的畝數-改良后種植的畝數=10畝,根據等量關系列出方程即可.【詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據題意列方程為:.故選:.【點睛】此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

過點作于,根據三角形的性質及三角形內角和定理可計算再由旋轉可得,,根據三角形外角和性質計算,根據含角的直角三角形的三邊關系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉,使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點睛】本題考查三角形性質的綜合應用,要熟練掌握等腰三角形的性質,含角的直角三角形的三邊關系,旋轉圖形的性質.14、.【解析】

根據題意可知,擲一次骰子有6個可能結果,而點數為奇數的結果有3個,所以點數為奇數的概率為.考點:概率公式.15、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.16、4【解析】試題分析:先根據眾數的定義求出a的值,再根據平均數的定義列出算式,再進行計算即可.試題解析:∵3,a,4,5的眾數是4,∴a=4,∴這組數據的平均數是(3+4+4+5)÷4=4.考點:1.算術平均數;2.眾數.17、x(x+2)(x﹣2)【解析】試題分析:首先提取公因式x,進而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用.18、k≥﹣1【解析】分析:根據方程的系數結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數根”是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、原分式方程無解.【解析】

根據解分式方程的方法可以解答本方程,去分母將分式方程化為整式方程,解整式方程,驗證.【詳解】方程兩邊乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1檢驗:當x=1時,(x﹣1)(x+2)=0,∴原方程無解.【點睛】本題考查解分式方程,解題的關鍵是明確解放式方程的計算方法.20、6+【解析】

如下圖,過點C作CF⊥AB于點F,設AB長為x,則易得AF=x-4,在Rt△ACF中利用∠的正切函數可由AF把CF表達出來,在Rt△ABE中,利用∠的正切函數可由AB把BE表達出來,這樣結合BD=CF,DE=BD-BE即可列出關于x的方程,解方程求得x的值即可得到AB的長.【詳解】解:如圖,過點C作CF⊥AB,垂足為F,設AB=x,則AF=x-4,∵在Rt△ACF中,tan∠=,∴CF==BD,同理,Rt△ABE中,BE=,∵BD-BE=DE,∴-=3,解得x=6+.答:樹高AB為(6+)米.【點睛】作出如圖所示的輔助線,利用三角函數把CF和BE分別用含x的式子表達出來是解答本題的關鍵.21、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據統計圖可知,課外閱讀達3小時的共10人,占總人數的20%,由此可得出總人數;求出課外閱讀時間4小時與6小時男生的人數,再根據中位數與眾數的定義即可得出結論;根據求出的人數補全條形統計圖即可;

(2)求出課外閱讀時間為5小時的人數,再求出其人數與總人數的比值即可得出扇形的圓心角度數;

(3)求出總人數與課外閱讀時間為6小時的學生人數的百分比的積即可.【詳解】解:(1)∵課外閱讀達3小時的共10人,占總人數的20%,∴=50(人).∵課外閱讀4小時的人數是32%,∴50×32%=16(人),∴男生人數=16﹣8=8(人);∴課外閱讀6小時的人數=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數是4小時,眾數是5小時.補全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時的人數是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時的人數是4人,∴800×=64(人).答:九年級一周課外閱讀時間為6小時的學生大約有64人.【點睛】本題考查了統計圖與中位數、眾數的知識點,解題的關鍵是熟練的掌握中位數與眾數的定義與根據題意作圖.22、(1)BD,CE的關系是相等;(2)或;(3)1,1【解析】分析:(1)依據△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.分兩種情況進行討論,即可得到旋轉過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.①當小三角形旋轉到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉過程中線段PD的最小值為1;②當小三角形旋轉到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、圓的有關知識,解題的關鍵是靈活運用這些知識解決問題,學會分類討論的思想思考問題,學會利用圖形的特殊位置解決最值問題.23、(1)頂點(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】

(1)將點B和點C代入求出拋物線L即可求解.(2)將拋物線L化頂點式求出頂點再根據關于原點對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點P的可能性,求出代入即可求解.【詳解】(1)將點B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點A,,,A(-1,0),拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1).(2)拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1)拋物線L1的頂點與拋物線L的頂點關于原點對稱,對稱頂點坐標為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點代入得:.【點睛】本題主要考查拋物線綜合題,討論出P點的所有可能性是解題關鍵.24、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是【解析】

(1)把x=y=m,a=1,b=1代入函數解析式,列出方程,通過解方程求得m的值即可;(1)拋物線上恒有兩個不同的“和諧點”A、B.則關于m的方程m=am1+(3b+1)m+b-3的根的判別式△=9b1-4ab+11a.①令y=9b1-4ab+11a,對于任意實數b,均有y>2,所以根據二次函數y=9b1-4ab+11的圖象性質解答;②利用二次函數圖象的對稱性質解答即可.【詳解】(1)當a=1,b=1時,m=1m1+4m+1﹣4,解得m=或m=﹣1.所以點P的坐標是(,)或(﹣1,﹣1);(1)m=am1+(3b+1)m+b﹣3,△=9b1﹣4ab+11a.①令y=9b1﹣4ab+11a,對于任意實數b,均有y>2,也就是說拋物線y=9b1﹣4ab+11的圖象都在b軸(橫軸)上方.∴△=(﹣4a)1﹣4×9×11a<2.∴2<a<17.②由“和諧點”定義可設A(x1,y1),B(x1,y1),則x1,x1是ax1+(3b+1)x+b﹣3=2的兩不等實根,.∴線段AB的中點坐標是:(﹣,﹣).代入對稱軸y=x﹣(+1),得﹣=﹣(+1),∴3b+1=+a.∵a>2,>2,a?=1為定值,∴3b+1=+a≥1=1,∴b≥.∴b的最小值是.【點睛】此題考查了二次函數綜合題,其中涉及到了二次函數圖象上點的坐標特征,拋物線與x軸的交點,一元二次方程與二次函數解析式間的關系,二次函數圖象的性質等知識點,難度較大,解題時,掌握“和諧點”的定義是解題的難點.25、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】

(1)依據DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當DE=16?8時,△AEM是等邊三角形;(3)設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據△DEN∽△BNA,即可得出PN=,根據S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動點E從點D出發,在線段DC上運動,同時點F從點B出發,以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當DE=16﹣8時,△AEM是等邊三角形;(3)△ANF的面積不變.設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【點睛】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質,等邊三角形的性質,全等三角形的判定與性質,解直角三角形以及相似三角形的判定與性質的綜合運用,解決問題的關鍵是作輔助線構造相似三角形,利用全等三角形的對應邊相等,相似三角形的對應邊成比例得出結論.26、(1)①3,1;②最小值為3;(1)【解析】

(1)①根據點Q與點P之間的“直距”的定義計算即可;②如圖3中,由題意,當DCO為定值時,點C的軌跡是以點O為中心的正方形(如左邊圖),當DCO=3時,該正方形的一邊與直線y=-x+3重合(如右邊圖),此時DCO定值最小,最小值為3;(1)如圖4中,平移直線y=1x+4,當平移后的直線與⊙O在左邊相切時,設切點為E,作EF∥x軸交直線y=1x+4于F,此時DEF定值最小;【詳解】解:(1)①如圖1中,觀察圖象可知DAO=1+1=3,DBO=1,故答案為3,1.②(i)當點C在第一象限時(),根據題意可知,為定值,設點C坐標為,則,即此時為3;(ii)當點C在坐標軸上時(,),易得為3;(ⅲ)當點C在第二象限時(),可得;(ⅳ)當點C在第四象限時(),可得;綜上所述,當時,取得最小值為3;(1)如解圖②,可知點F有兩種情形,即過點E分別作y軸、x軸的垂線與直線分別交于、;如解圖③,平移直線使平移后的直線與相切,平移后的直線與x軸交于點G,設直線與x軸交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論