




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省撫州市南城第一中學數學高二上期末聯考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數列中,,,則該數列的公比為()A. B.C. D.2.我國古代數學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數是上一層所掛燈數的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數比最上面3層塔所掛燈的總盞數多200D.最下面3層塔所掛燈的總盞數是最上面3層塔所掛燈的總盞數的16倍3.等比數列的公比為,則“”是“對于任意正整數n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.已知為圓:上任意一點,則的最小值為()A. B.C. D.5.在正方體中中,,若點P在側面(不含邊界)內運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.6.由于受疫情的影響,學校停課,同學們通過三種方式在家自主學習,現學校想了解同學們對假期學習方式的滿意程度,收集如圖1所示的數據;教務處通過分層抽樣的方法抽取4%的同學進行滿意度調查,得到的數據如圖2.下列說法錯誤的是()A.樣本容量為240B.若,則本次自主學習學生的滿意度不低于四成C.總體中對方式二滿意學生約為300人D.樣本中對方式一滿意的學生為24人7.曲線在點處的切線方程是()A. B.C. D.8.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.9.已知數列滿足,則()A.32 B.C.1320 D.10.甲、乙、丙、丁共4名同學進行黨史知識比賽,決出第1名到第4名的名次(名次無重復),其中前2名將獲得參加市級比賽的資格,甲和乙去詢問成績,回答者對甲說:“很遺憾,你沒有獲得參加市級比賽的資格.”對乙說:“你當然不會是最差的.”從這兩個回答分析,4人的排名有()種不同情況.A.6 B.8C.10 D.1211.執行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.912.若直線與圓只有一個公共點,則m的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設x,y滿足約束條件則的最大值為________14.在空間直角坐標系中,向量為平面ABC的一個法向量,其中,,則向量的坐標為______15.設直線,直線,若,則_______.16.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)當時,求的單調區間;(2)當時,證明:存在最大值,且恒成立.18.(12分)已知三角形ABC的內角A,B,C的對邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點D,,求CD的長19.(12分)中,三內角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a20.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值21.(12分)已知橢圓F:經過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標準方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標,若不存在,請說明理由22.(10分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(1)求證:CE//平面PAB;(2)若M是線段CE上一動點,則線段AD上是否存在點,使MN//平面PAB?說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設等比數列的公比為,可得出,即可得解.【詳解】設等比數列的公比為,可得出.故選:C.2、C【解析】由題設易知是公比為2的等比數列,應用等比數列前n項和公式求,結合各選項的描述及等比數列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數為,則數列是公比為2的等比數列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數為14,最下面3層塔所掛燈的總盞數為224,C不正確,D正確故選:C.3、D【解析】結合等比數列的單調性,根據充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數n,都有”的既不充分也不必要條件.故選:D4、C【解析】設,則的幾何意義為圓上的點和定點連線的斜率,利用直線和圓相切,即可求出的最小值;【詳解】圓,它圓心是,半徑為1,設,則,即,當直線和圓相切時,有,可得,,的最小值為:,故選:5、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側面(不含邊界)內運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A6、B【解析】利用扇形統計圖和條形統計圖可求出結果【詳解】選項A,樣本容量為,該選項正確;選項B,根據題意得自主學習的滿意率,錯誤;選項C,樣本可以估計總體,但會有一定的誤差,總體中對方式二滿意人數約為,該選項正確;選項D,樣本中對方式一滿意人數為,該選項正確.故選:B【點睛】本題主要考查了命題真假的判斷,考查扇形統計圖和條形統計圖等基礎知識,考查運算求解能力,屬于中檔題7、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B8、D【解析】經判斷點在圓內,與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內,連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D9、A【解析】先令,求出,再當時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當時,,當時,由,可得,兩式相除可得,所以,所以,故選:A10、C【解析】由題可知甲不在前2名,乙不在最后一名,然后分類討論可得答案.【詳解】若甲是最后一名,則其他三人沒有限制,4人排名即為,若甲是第三名,4人的排名為,所以4人的排名有種情況.故選:C11、B【解析】分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環累乘值,并判斷滿足時輸出的值【詳解】解:模擬執行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環,輸出的值為27故選:12、D【解析】利用圓心到直線的距離等于半徑列方程,化簡求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個公共點,所以直線與圓相切,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標代入目標函數中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:114、【解析】根據向量為平面ABC的一個法向量,由求解.【詳解】因為,,所以,又因為向量為平面ABC的一個法向量,所以,解得,所以,故答案為:15、##0.5【解析】根據兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:16、【解析】根據雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的單增區間為,;單減區間為,,;(2)證明見解析.【解析】(1)先求出函數的定義域,求出,由,結合函數的定義域可得出函數的單調區間.(2)當時,定義域R,求出,從而得出單調區間,由當時,,當時,,以及極值點與2的大小關系可得出當時,函數有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區間為,;單減區間為,,.(2)當時,定義域R因為,當時,,當時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調遞減,在上單調遞增,在上單調遞減.當時,,且,由所以當時,函數有最大值.所以,因為,所以,設,則所以化為由,則,則,所以所以18、(1)(2)【解析】(1)根據正弦定理邊角互化得,進而得;(2)根據題意得,進而在中,由余弦定理即可得答案.【小問1詳解】解:因為,所以由正弦定理可得,所以,即,因為,所以,故,因為,所以【小問2詳解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得19、(1)(2)【解析】(1)根據正弦定理統一三角函數化簡即可求解;(2)根據角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問2詳解】∵,∴,解得由余弦定理,得,∴.20、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,由即可求解.【詳解】(1)證明:因為,,所以,,因為,所以,所以,即因為底面,所以底面,所以因為,所以平面,又平面,所以平面平面(2)解:如圖,分別以,,為,,軸,建立空間直角坐標系,則,,,,所以,,,設平面的法向量為,則令,得設平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點睛】思路點睛:解決二面角相關問題通常用向量法,具體步驟為:(1)建坐標系,建立坐標系的原則是盡可能的使得已知點在坐標軸上或在坐標平面內;(2)根據題意寫出點的坐標以及向量的坐標,注意坐標不能出錯.(3)利用數量積驗證垂直或求平面的法向量.(4)利用法向量求距離、線面角或二面角.21、(1);(2)存在點,使得為定值.【解析】(1)設,,,結合條件即求;(2)由題可設直線方程,利用韋達定理法可得,再結合條件可得點的軌跡方程為,然后利用橢圓的定義即得結論.【小問1詳解】設,,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標分別為,當直線AB或CD的斜率不存在時,點M的坐標為或,當直線AB和CD的斜率都存在時,設斜率分別為,點,直線AB為,聯立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設點,則,所以,化簡得,當直線或的斜率不存在時,點M的坐標為或,也滿足此方程所以點在橢圓上,根據橢圓定義可知,存在定點,使得為定值【點睛】關鍵點點睛:本題的關鍵是利用韋達定理法及題設條件求出點M的軌跡方程,再結合橢圓的定義,從而問題得到解決.22、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項目管理真題模擬試題及答案
- 理財中的法律合規性分析試題及答案
- 證券投資生態變化的典型案例考題及答案
- 高效閱讀材料準備2025年注冊會計師考試試題及答案
- 證券從業資格的核心試題及答案
- 完整注冊會計師考試框架試題及答案
- 針對園藝師考試的個性化備考計劃試題及答案
- 2025年內部審計知識試題及答案
- 農業職業經理人考試難點及解答試題及答案
- 油炸食品制造業中的食品安全與產業鏈協同考核試卷
- 機車直流電機的電力拖動-直流電機的基本方程
- 2022-2023學年四川省巴中市巴州區川教版(三起)四年級下學期4月期中英語試卷(解析版)
- 互聯網信息審核員考試題庫大全-上(單選題匯總)
- 湖南省長沙市實驗小學小學語文五年級下冊期末試卷(含答案)
- 完美公司瑪麗艷美的觀念
- 硫酸生產技術 二氧化硫催化氧化的化學平衡及動力學
- 浙攝影版(2020)信息技術三年級上冊第一課認識計算機(課件)
- 第七講-信息技術與大數據倫理問題-副本
- 校園安全常識測試題卷
- 建筑用玻璃ccc標準
- 新版PFMEA自動判定
評論
0/150
提交評論