2025屆山東省泰安市泰安一中高三數學第一學期期末學業水平測試試題含解析_第1頁
2025屆山東省泰安市泰安一中高三數學第一學期期末學業水平測試試題含解析_第2頁
2025屆山東省泰安市泰安一中高三數學第一學期期末學業水平測試試題含解析_第3頁
2025屆山東省泰安市泰安一中高三數學第一學期期末學業水平測試試題含解析_第4頁
2025屆山東省泰安市泰安一中高三數學第一學期期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省泰安市泰安一中高三數學第一學期期末學業水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知純虛數滿足,其中為虛數單位,則實數等于()A. B.1 C. D.22.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.53.已知函數,存在實數,使得,則的最大值為()A. B. C. D.4.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關系不能確定5.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.6.在關于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.38.己知函數的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.9.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交10.已知函數,則()A.2 B.3 C.4 D.511.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.212.某網店2019年全年的月收支數據如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數與眾數均為30 D.這一年的總利潤超過400萬元二、填空題:本題共4小題,每小題5分,共20分。13.“北斗三號”衛星的運行軌道是以地心為一個焦點的橢圓.設地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,則“北斗三號”衛星運行軌道的離心率為__________.14.設為定義在上的偶函數,當時,(為常數),若,則實數的值為______.15.記數列的前項和為,已知,且.若,則實數的取值范圍為________.16.設向量,,且,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設,求的取值范圍.18.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.19.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.20.(12分)已知數列的前項和為,且滿足,各項均為正數的等比數列滿足(1)求數列的通項公式;(2)若,求數列的前項和21.(12分)選修4-4:坐標系與參數方程已知曲線的參數方程是(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.22.(10分)設等差數列的首項為0,公差為a,;等差數列的首項為0,公差為b,.由數列和構造數表M,與數表;記數表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數t,若t不屬于數表M,則t屬于數表;(3)設,,對于整數t,t不屬于數表M,求t的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先根據復數的除法表示出,然后根據是純虛數求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數,所以,所以.故選:B.【點睛】本題考查復數的除法運算以及根據復數是純虛數求解參數值,難度較易.若復數為純虛數,則有.2、D【解析】

根據雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.3、A【解析】

畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.4、B【解析】

先用定積分求得陰影部分一半的面積,再根據幾何概型概率公式可求得.【詳解】根據題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.5、D【解析】

根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.6、C【解析】

討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關系,考查了不等式恒成立問題.對于探究兩個命題的關系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.7、C【解析】

先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數性質奇偶性的應用。8、A【解析】

先將函數解析式化簡為,結合題意可求得切點及其范圍,根據導數幾何意義,即可求得的值.【詳解】函數即直線與函數圖象恰有四個公共點,結合圖象知直線與函數相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數的圖像與性質的綜合應用,由交點及導數的幾何意義求函數值,屬于難題.9、D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.10、A【解析】

根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.11、C【解析】

由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.12、D【解析】

直接根據折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數為30,中位數為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出圖形,結合橢圓的定義和題設條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.【點睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質,列出方程組,求得的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.14、1【解析】

根據為定義在上的偶函數,得,再根據當時,(為常數)求解.【詳解】因為為定義在上的偶函數,所以,又因為當時,,所以,所以實數的值為1.故答案為:1【點睛】本題主要考查函數奇偶性的應用,還考查了運算求解的能力,屬于基礎題.15、【解析】

根據遞推公式,以及之間的關系,即可容易求得,再根據數列的單調性,求得其最大值,則參數的范圍可求.【詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數列是首項為3,公差為2的等差數列,所以,則.令,則.當時,,數列單調遞減,而,,,故,即實數的取值范圍為.故答案為:.【點睛】本題考查由遞推公式求數列的通項公式,涉及數列單調性的判斷,屬綜合困難題.16、【解析】

根據向量的數量積的計算,以及向量的平方,簡單計算,可得結果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標計算,主要考查計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先利用同角的三角函數關系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數值求值,考查正弦定理的應用.18、(1)見解析;(2)【解析】

(1)由題可知,根據三角形的中位線的性質,得出,根據矩形的性質得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據面面垂直的性質,得出平面,從而得出到平面的距離為,結合棱錐的體積公式,即可求得結果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質和棱錐的體積公式,考查邏輯推理和計算能力.19、(1)證明見解析;(2)【解析】

(1)由已知可證,即可證明結論;(2)根據已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數學運算的數學核心素養,屬于中檔題.20、(1);(2)【解析】

(1)由化為,利用數列的通項公式和前n項和的關系,得到是首項為,公差為的等差數列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數列從開始成等差數列,,代入得是首項為,公差為的等差數列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數列的通項公式和前n項和的關系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.21、(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;

(2)由過的圓心,得得,設,,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點,在極坐標下,設,分別代入中,有和∴,則,即22、(1)(2)詳見解析(3)29【解析】

(1)將,代入,可求出,,可代入求,,可求結果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數列的通項公式為:;等差數列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數列的通項公式為:;等差數列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數,考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數.反證法:假設集合中任何一個元素,都不是7的倍數,則集合中每一元素關于7的余數可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論