用轉化的策略解決問題(課件)數學五年級下冊_第1頁
用轉化的策略解決問題(課件)數學五年級下冊_第2頁
用轉化的策略解決問題(課件)數學五年級下冊_第3頁
用轉化的策略解決問題(課件)數學五年級下冊_第4頁
用轉化的策略解決問題(課件)數學五年級下冊_第5頁
已閱讀5頁,還剩39頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

用轉化的策略解決問題(2)WPS,aclicktounlimitedpossibilities倒推畫圖轉化綜合分析解決問題的策略觀察這道算式,你有什么發現?計算12+14+18+116觀察這道算式,你有什么發現?計算12+14+18+1164個分數連加,每個加數的分子都是1。觀察這道算式,你有什么發現?計算12+14+18+116分母是有規律排列的,依次是2,2×2,2×2×2,2×2×2×2。從左往右依次計算。你準備怎樣計算?先計算,再與同學交流你的計算方法。先通分,再計算。你準備怎樣計算?先計算,再與同學交流你的計算方法。能不能轉化成更簡單的算式?你準備怎樣計算?先計算,再與同學交流你的計算方法。把正方形看作單位“1”,把算式中的加數填入下圖。計算12+14+18+116把正方形看作單位“1”,把算式中的加數填入下圖。計算12+14+18+116418116121把正方形看作單位“1”,把算式中的加數填入下圖。計算12+14+18+116思考:1.空白部分占大正方形的幾分之幾?2.把算式和圖形聯系起來想一想,原來的算式可以怎樣轉化?418116121空白部分是大正方形的

涂色部分是大正方形的(1-)

原來的加法算式可以轉化成……

把正方形看作單位“1”,把算式中的加數填入下圖。418116121計算12+14+18+116用轉化后的算式算一算,看看與原來的計算結果是否相同?把正方形看作單位“1”,把算式中的加數填入下圖。418116121計算12+14+18+116用轉化后的算式算一算,看看與原來的計算結果是否相同?812141161321PART-0188121411613218121411613216411.計算1.計算12+14+18+116===1-1281=回顧解決問題的過程,你有什么體會?回顧解決問題的過程,你有什么體會?有些復雜的算式可以轉化成簡單的算式。有時畫圖可以幫助我們找到轉化的方法。數形結合百般好,數形隔離萬事休。—華羅庚21+31=6362+=65異分母分數同分母分數3.84÷1.6=2.4)1.62.46432640除數是小數的除法除數是整數的除法觀察下面每個圖形中圓的排列規律,并填空。

1=1×1

1+3=4=2×2

1+3+5=9=3×(

)

1+3+5+7=(

)=(

)×(

)它們的和正好是圓的個數

它們的和正好是加數的個數乘加數的個數,也就是加數個數的平方。

它們這些加數都是奇數,是連續的奇數相加。連續的幾個奇數相加,它們的和等于奇數個數的平方。觀察下面每個圖形中圓的排列規律,并填空。

1=1×1

1+3=4=2×2

1+3+5=9=3×(3)

1+3+5+7=(16)=(4)×(4)(2)根據上面的規律用簡便方法計算。

1+3+5+7+9+11

1+3+5+7+9+11+13+15+17+19(2)根據上面的規律用簡便方法計算。

1+3+5+7+9+11=36=6×6

1+3+5+7+9+11+13+15+17+19=100=10×10(3)請同學們換個角度觀察,又有什么新的發現?

(3)請同學們換個角度觀察,又有什么新的發現?

1+2+1=4=2×2

1+2+3+2+1=9=3×(

)

1+2+3+4+3+2+1=(

)=(

)×(

)請同學們換個角度觀察,又有什么新的發現?

1+2+1=4=2×2

1+2+3+2+1=9=3×(3)

1+2+3+4+3+2+1=(16)=(4)×(4)(4)圓又排成了右圖的形狀。一共用了多少個圓?你能聯系梯形面積公式,計算出用了多少個圓嗎?(4)圓又排成了右圖的形狀。你能聯系梯形面積公式,計算出用了多少個圓嗎?(頂層個數+底層個數)×層數÷2=總個數(4)圓又排成了右圖的形狀。你能聯系梯形面積公式,計算出用了多少個圓嗎?(頂層個數+底層個數)×層數÷2=總個數6+7+8+9+10+11+12+13+14+15=(6+15)×10÷2=105結合上面的計算想一想,下面10個連續自然數的和,怎樣計算比較簡便?15+16+17+18+19+20+21+22+23+24結合上面的計算想一想,下面10個連續自然數的和,怎樣計算比較簡便?15+16+17+18+19+20+21+22+23+24=(15+24)×10÷2=390÷2=195(首項+末項)×項數÷2=總和

數學學習的過程就是不斷轉化的過程。

?!復雜

簡單抽象具體熟悉陌生未知已知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論