




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
初一數學知識點歸納總結(六篇)
處理文檔需要確保信息準確真實,范文的重要性日益凸顯。模仿范文的寫作結構有助于提升文章的水平和質量,你是不是正在尋找優秀的范文呢?小編誠摯推薦一篇精彩的《初一數學知識點歸納總結》。
初一數學知識點歸納總結【篇1】
第一章有理數
1、大于0的數是正數。
2、有理數分類:正有理數、0、負有理數。
3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)
4、規定了原點,單位長度,正方向的直線稱為數軸。
5、數的大小比較:
①正數大于0,0大于負數,正數大于負數。
②兩個負數比較,絕對值大的反而小。
6、只有符號不同的兩個數稱互為相反數。
7、若a+b=0,則a,b互為相反數
8、表示數a的點到原點的距離稱為數a的絕對值
9、絕對值的三句:正數的絕對值是它本身,
負數的絕對值是它的相反數,
0的絕對值是0。
10、有理數的計算:先算符號、再算數值。
11、加減:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負
13、乘方:表示n個相同因數的乘積。
14、負數的奇次冪是負數,負數的偶次冪是正數。
15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。
16、科學計數法:用a_10n表示一個數。(其中a是整數數位只有一位的數)
17、左邊第一個非零的數字起,所有的數字都是有效數字。
初一數學知識點歸納總結【篇2】
1、某工作,甲單獨干需用15小時完成,乙單獨干需用12小時完成,若甲先干1小時、乙又單獨干4小時,剩下的工作兩人合作,問:再用幾小時可全部完成任務?
2、某工廠計劃26小時生產一批零件,后因每小時多生產5件,用24小時,不但完成了任務,而且還比原計劃多生產了60件,問原計劃生產多少零件?
3、某高校共有5個大餐廳和2個小餐廳.經過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳、1個小餐廳,可供2280名學生就餐.
(1)求1個大餐廳、1個小餐廳分別可供多少名學生就餐;
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由.
4、甲乙兩件衣服的成本共500元,商店老板為獲取利潤,決定將家服裝按50%的利潤定價,乙服裝按40%的利潤定價,在實際銷售時,應顧客要求,兩件服裝均按9折出售,這樣商店共獲利157元,求甲乙兩件服裝成本各是多少元?
初一數學知識點歸納總結【篇3】
1.數軸
(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸.
數軸的三要素:原點,單位長度,正方向.
(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數.(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)
(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大.
2.相反數
(1)相反數的概念:只有符號不同的兩個數叫做互為相反數.
(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等.
(3)多重符號的化簡:與+個數無關,有奇數個﹣號結果為負,有偶數個﹣號,結果為正.
(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加﹣,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號.
3.絕對值
(1)概念:數軸上某個數與原點的距離叫做這個數的絕對值.
①互為相反數的兩個數絕對值相等;
②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.
③有理數的絕對值都是非負數.
(2)如果用字母a表示有理數,則數a絕對值要由字母a本身的取值來確定:
①當a是正有理數時,a的絕對值是它本身a;
②當a是負有理數時,a的絕對值是它的相反數﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a0)0(a=0)﹣a(a0)
4.有理數大小比較
(1)有理數的大小比較
比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小.
(2)有理數大小比較的法則:
①正數都大于0;
②負數都小于0;
③正數大于一切負數;
④兩個負數,絕對值大的其值反而小.
【規律方法】有理數大小比較的三種方法
1.法則比較:正數都大于0,負數都小于0,正數大于一切負數.兩個負數比較大小,絕對值大的反而小.
2.數軸比較:在數軸上右邊的點表示的數大于左邊的點表示的數.
3.作差比較:
若a﹣b0,則ab;
若a﹣b0,則a
若a﹣b=0,則a=b.
5.有理數的減法
(1)有理數減法法則:減去一個數,等于加上這個數的相反數.即:a﹣b=a+(﹣b)
(2)方法指引:
①在進行減法運算時,首先弄清減數的符號;
②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數的性質符號(減數變相反數);
【注意】:在有理數減法運算時,被減數與減數的位置不能隨意交換;因為減法沒有交換律.
減法法則不能與加法法則類比,0加任何數都不變,0減任何數應依法則進行計算.
6.有理數的乘法
(1)有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘.
(2)任何數同零相乘,都得0.
(3)多個有理數相乘的法則:①幾個不等于0的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正.②幾個數相乘,有一個因數為0,積就為0.
(4)方法指引:
①運用乘法法則,先確定符號,再把絕對值相乘.
②多個因數相乘,看0因數和積的符號當先,這樣做使運算既準確又簡單.
7.有理數的混合運算
(1)有理數混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內的運算.
(2)進行有理數的混合運算時,注意各個運算律的運用,使運算過程得到簡化.
【規律方法】有理數混合運算的四種運算技巧
1.轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數轉化為分數進行約分計算.
2.湊整法:在加減混合運算中,通常將和為零的兩個數,分母相同的兩個數,和為整數的兩個數,乘積為整數的兩個數分別結合為一組求解.
3.分拆法:先將帶分數分拆成一個整數與一個真分數的和的形式,然后進行計算.
4.巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.
8.科學記數法表示較大的數
(1)科學記數法:把一個大于10的數記成a10n的形式,其中a是整數數位只有一位的數,n是正整數,這種記數法叫做科學記數法.【科學記數法形式:a10n,其中1a10,n為正整數.】
(2)規律方法總結:
①科學記數法中a的要求和10的指數n的表示規律為關鍵,由于10的指數比原來的整數位數少1;按此規律,先數一下原數的整數位數,即可求出10的指數n.
②記數法要求是大于10的數可用科學記數法表示,實質上絕對值大于10的負數同樣可用此法表示,只是前面多一個負號.
9.代數式求值
(1)代數式的:用數值代替代數式里的字母,計算后所得的結果叫做代數式的值.
(2)代數式的求值:求代數式的值可以直接代入、計算.如果給出的代數式可以化簡,要先化簡再求值.
題型簡單總結以下三種:
①已知條件不化簡,所給代數式化簡;
②已知條件化簡,所給代數式不化簡;
③已知條件和所給代數式都要化簡.
10.規律型:圖形的變化類
首先應找出圖形哪些部分發生了變化,是按照什么規律變化的,通過分析找到各部分的變化規律后直接利用規律求解.探尋規律要認真觀察、仔細思考,善用聯想來解決這類問題.
11.等式的性質
(1)等式的性質
性質1、等式兩邊加同一個數(或式子)結果仍得等式;
性質2、等式兩邊乘同一個數或除以一個不為零的數,結果仍得等式.
(2)利用等式的性質解方程
利用等式的性質對方程進行變形,使方程的形式向_=a的形式轉化.
應用時要注意把握兩關:
①怎樣變形;
②依據哪一條,變形時只有做到步步有據,才能保證是正確的.
12.一元一次方程的解
定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解.
把方程的解代入原方程,等式左右兩邊相等.
13.解一元一次方程
(1)解一元一次方程的一般步驟:
去分母、去括號、移項、合并同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向_=a形式轉化.
(2)解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內各項后能消去分母,就先去括號.
(3)在解類似于a_+b_=c的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)_=c.使方程逐漸轉化為a_=b的最簡形式體現化歸思想.將a_=b系數化為1時,要準確計算,一弄清求_時,方程兩邊除以的是a還是b,尤其a為分數時;二要準確判斷符號,a、b同號_為正,a、b異號_為負.
14.一元一次方程的應用
(一)、一元一次方程解應用題的類型有:
(1)探索規律型問題;
(2)數字問題;
(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價100%);
(4)工程問題(①工作量=人均效率人數時間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);
(5)行程問題(路程=速度時間);
(6)等值變換問題;
(7)和,差,倍,分問題;
(8)分配問題;
(9)比賽積分問題;
(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).
(二)、利用方程解決實際問題的基本思路如下:首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為_,然后用含_的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答.
列一元一次方程解應用題的五個步驟
1.審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.
2.設:設未知數(_),根據實際情況,可設直接未知數(問什么設什么),也可設間接未知數.
3.列:根據等量關系列出方程.
4.解:解方程,求得未知數的值.
5.答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.
15.專題:正方體相對兩個面上的文字
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象.
(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面.
初一數學知識點歸納總結【篇4】
1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)。
2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3、橫軸、縱軸、原點:水平的數軸稱為_軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。
5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6、各象限點的坐標特點①第一象限的點:橫坐標0,縱坐標0;②第二象限的點:橫坐標0,縱坐標0;③第三象限的點:橫坐標0,縱坐標0;④第四象限的點:橫坐標0,縱坐標0。
7、由二元一次方程組中的一個方程,將一個未知數用含有另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
8、兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。
9、多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
10、二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
11、二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。
初一數學知識點歸納總結【篇5】
1、缺步解答
初一數學考試中如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等于失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每進行一步得分點的演算都可以得分,最后結論雖然未得出,但分數卻已過半,這叫大題拿小分,確實是個好主意。
2、跳步答題
初二數學解題過程卡在某一過渡環節上是常見的。這時,我們可以先承認中間結論,往后推,看能否得到結論。如果不能,說明這個途徑不對,立即改變方向;如果能得出預期結論,就回過頭來,集中力量攻克這一卡殼處。
由于考試時間的限制,卡殼處的攻克來不及了,那么可以把前面的寫下來,再寫出證實某步之后,繼續有一直做到底,這就是跳步解答。
也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面,事實上,某步可證明或演算如下,以保持卷面的工整。若題目有兩問,第一問想不出來,可把第一問作已知,先做第二問,這也是跳步解答。
3、退步解答
以退求進是一個重要的解題策略。如果你不能解決所提出的問題,那么,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結論退到較弱的結論。總之,退到一個你能夠解決的問題。為了不產生以偏概全的誤解,應開門見山寫上本題分幾種情況。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發。
4、輔助解答
一道題目的完整解答,既有主要的實質性的步驟,也有次要的輔助性的步驟。實質性的步驟未找到之前,找輔助性的步驟是明智之舉,既必不可少而又不困難。如:準確作圖,把題目中的條件翻譯成數學表達式,設應用題的未知數等。
書寫也是輔助解答。書寫要工整、卷面能得分是說第一印象好會在閱卷老師的心理上產生光環效應:書寫認真學習認真成績優良給分偏高。
有些選擇題,大膽猜測也是一種輔助解答,實際上猜測也是一種能力。
初一數學知識點歸納總結【篇6】
一、注重預習,指導自學。
我個人認為,預習應該來說在初中階段還是占有比較重要的地位的,而在小學階段一般不那么重視,因此,到了初一大多數學生不會預習,即使預習了,也只是將課文從頭到尾讀一遍。在指導學生預習時應要求學生做到:一粗讀,首先大致瀏覽教材的有關內容,掌握本節知識的概貌。二細讀,對重要概念、公式、法則、定理反復閱讀、體會、思考,注意知識的形成過程,對難以理解的概念作出記號,多問些為什
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省攀枝花市西區2024-2025學年三年級數學第二學期期末監測試題含解析
- 浙江紹興一中2024-2025學年高三下學期語文試題3月月考試題含解析
- 2025年度企業餐飲管理合同
- 產品品牌授權合同書
- 高項第合同爭議解決的國際視角
- 商業合作合同保密協議書范本
- 幼兒音樂游戲律動創編示例
- 建筑裝飾施工組織與管理2流水施工原理
- TPM設備管理理論
- 三年級英語下冊 Unit 3 What colour is this balloon第3課時教學設計 湘少版
- 2025年高考作文備考之十大熱點主題及寫作導引
- 2025年重慶中考押題道德與法治試卷(一)(含答案)
- 長城汽車2025人才測評答案
- 腫瘤的內分泌治療護理
- 東北三省三校2025屆高三下學期第二次聯合模擬考試數學試題及答案
- 污水管道封堵施工方案
- 2025屆上海市浦東新區高三二模英語試卷(含答案)
- 【MOOC】航空燃氣渦輪發動機結構設計-北京航空航天大學 中國大學慕課MOOC答案
- 職業衛生評價考試計算題匯總
- JJF 1318-2011 影像測量儀校準規范-(高清現行)
- TCWAN 0027-2022 TCEEIA 584-2022 新能源汽車鋁合金電池托盤焊接制造規范
評論
0/150
提交評論