2022年河北省秦皇島市數學高三上期末經典試題含解析_第1頁
2022年河北省秦皇島市數學高三上期末經典試題含解析_第2頁
2022年河北省秦皇島市數學高三上期末經典試題含解析_第3頁
2022年河北省秦皇島市數學高三上期末經典試題含解析_第4頁
2022年河北省秦皇島市數學高三上期末經典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足:,則的共軛復數為()A. B. C. D.2.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則3.函數的部分圖象如圖所示,則的單調遞增區間為()A. B.C. D.4.函數的圖象大致為()A. B.C. D.5.若集合,,則A. B. C. D.6.單位正方體ABCD-,黑、白兩螞蟻從點A出發沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.07.如圖,這是某校高三年級甲、乙兩班在上學期的5次數學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數學成績平均分的平均水平高于乙班B.甲班的數學成績的平均分比乙班穩定C.甲班的數學成績平均分的中位數高于乙班D.甲、乙兩班這5次數學測試的總平均分是1038.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直9.雙曲線的漸近線方程為()A. B.C. D.10.已知函數,若,則的取值范圍是()A. B. C. D.11.已知定義在R上的函數(m為實數)為偶函數,記,,則a,b,c的大小關系為()A. B. C. D.12.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.14.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養了此種盆栽植物10株,設為其中成活的株數,若的方差,,則________.15.在的展開式中,項的系數是__________(用數字作答).16.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據上述表格中的統計數據填寫下面列聯表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發言,記這人中女生的人數為,求的分布列和數學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63518.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數方程為(為參數).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.19.(12分)已知函數.(1)當時,解關于x的不等式;(2)當時,若對任意實數,都成立,求實數的取值范圍.20.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.21.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結PC,PB構成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.22.(10分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

轉化,為,利用復數的除法化簡,即得解【詳解】復數滿足:所以故選:B【點睛】本題考查了復數的除法和復數的基本概念,考查了學生概念理解,數學運算的能力,屬于基礎題.2、D【解析】

利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.3、D【解析】

由圖象可以求出周期,得到,根據圖象過點可求,根據正弦型函數的性質求出單調增區間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數的單調遞增區間為故選:.【點睛】本題主要考查了三角函數的圖象與性質,利用“五點法”求函數解析式,屬于中檔題.4、A【解析】

確定函數在定義域內的單調性,計算時的函數值可排除三個選項.【詳解】時,函數為減函數,排除B,時,函數也是減函數,排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數解析式選擇函數圖象,可通過解析式研究函數的性質,如奇偶性、單調性、對稱性等等排除,可通過特殊的函數值,函數值的正負,函數值的變化趨勢排除,最后剩下的一個即為正確選項.5、C【解析】

解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.6、B【解析】

根據規則,觀察黑螞蟻與白螞蟻經過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質是到達哪個點以及計算白螞蟻爬完2020段后實質是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.7、D【解析】

計算兩班的平均值,中位數,方差得到正確,兩班人數不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數是103,方差是26.4;乙班的平均分是102,中位數是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數,方差,意在考查學生的計算能力和應用能力.8、D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.9、A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.10、B【解析】

對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數,由得或解得.故選:B.【點睛】本題考查利用分段函數性質解不等式,屬于基礎題.11、B【解析】

根據f(x)為偶函數便可求出m=0,從而f(x)=﹣1,根據此函數的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數的定義,指數函數的單調性,對于偶函數比較函數值大小的方法就是將自變量的值變到區間[0,+∞)上,根據單調性去比較函數值大小.12、C【解析】

對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】

依題意,當時,由,即,解得;當時,由,解得或(舍去).綜上,得或.14、【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.15、【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.16、【解析】

設為的中點,根據弦長公式,只需最小,在中,根據余弦定理將表示出來,由,得到,結合弦長公式得到,求出點的軌跡方程,即可求解.【詳解】設為的中點,在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點睛】本題考查直線與圓的位置關系、相交弦長的最值,解題的關鍵求出點的軌跡方程,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】

(1)根據所給數據可完成列聯表.由總人數及女生人數得男生人數,由表格得達標人數,從而得男生中達標人數,這樣不達標人數隨之而得,然后計算可得結論;(2)由達標人數中男女生人數比為可得抽取的人數,總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望.【詳解】(1)列出列聯表,,所以在犯錯誤的概率不超過的前提下能判斷“課外體育達標”與性別有關.(2)(i)在“鍛煉達標”的學生中,男女生人數比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會交流的人中,隨機選出人發言,人中女生的人數為,則的可能值為,,,則,,,可得的分布列為:可得數學期望.【點睛】本題考查列聯表與獨立性檢驗,考查分層抽樣,隨機變量的概率分布列和期望.主要考查學生的數據處理能力,運算求解能力,屬于中檔題.18、(1)();(2).【解析】

(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數方程,極坐標方程,意在考查學生的計算能力和應用能力.19、(1)(2)【解析】

(1)當時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數的形式,求得的最小值,進而求得的取值范圍.【詳解】(1)當時,由得由得解:,得∴當時,關于的不等式的解集為(2)①當時,,所以在上是減函數,在是增函數,所以,由題設得,解得.②當時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.20、(Ⅰ)函數的單調增區間為,單調減區間為;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區間為,單調減區間為;(Ⅱ)利用導數可得在區間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區間為,單調減區間為;(Ⅱ),則令,則(1),,所以在區間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數,當時,(a),(a)為減函數,所以(a)的最大值為,則的最大值為.【點睛】本題考查利用導數研究函數的單調性和最值,以及函數不等式恒成立問題的解法,意在考查學生等價轉化思想和數學運算能力,屬于較難題.21、Ⅰ詳見解析;Ⅱ①,②或.【解析】

Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論