山東省威海市文登區文登實驗、三里河中學2022-2023學年數學九上期末聯考模擬試題含解析_第1頁
山東省威海市文登區文登實驗、三里河中學2022-2023學年數學九上期末聯考模擬試題含解析_第2頁
山東省威海市文登區文登實驗、三里河中學2022-2023學年數學九上期末聯考模擬試題含解析_第3頁
山東省威海市文登區文登實驗、三里河中學2022-2023學年數學九上期末聯考模擬試題含解析_第4頁
山東省威海市文登區文登實驗、三里河中學2022-2023學年數學九上期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一件商品的原價是100元,經過兩次降價后價格為81元,設每次降價的百分比都是x,根據題意,下面列出的方程正確的是()A. B. C. D.2.如圖,在正方形網格中,△ABC的三個頂點都在格點上,則cosB的值為()A. B. C. D.13.如圖,在矩形中,在上,,交于,連結,則圖中與一定相似的三角形是A. B. C. D.和4.方程的解是()A.0 B.3 C.0或–3 D.0或35.如圖,點C在弧ACB上,若∠OAB=20°,則∠ACB的度數為()A. B. C. D.6.如圖,在正方形ABCD中,H是對角線BD的中點,延長DC至E,使得DE=DB,連接BE,作DF⊥BE交BC于點G,交BE于點F,連接CH、FH,下列結論:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正確的個數是()A.5 B.4 C.3 D.27.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.8.當k>0時,下列圖象中哪些可能是y=kx與y=在同一坐標系中的圖象()A. B. C. D.9.如圖,直線與反比例函數的圖象相交于、兩點,過、兩點分別作軸的垂線,垂足分別為點、,連接、,則四邊形的面積為()A.4 B.8 C.12 D.2410.如圖,為外一點,分別切于點切于點且分別交于點,若,則的周長為()A. B. C. D.11.已知,是拋物線上兩點,則正數()A.2 B.4 C.8 D.1612.小軍旅行箱的密碼是一個六位數,由于他忘記了密碼的末位數字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,D、E分別是△ABC的邊AB、AC上的點,連接DE,要使△ADE∽△ACB,還需添加一個條件(只需寫一個).14.已知是關于的方程的一個根,則___________.15.如圖,等邊邊長為2,分別以A,B,C為圓心,2為半徑作圓弧,這三段圓弧圍成的圖形就是著名的等寬曲線——魯列斯三角形,則該魯列斯三角形的面積為___________.16.如圖,已知中,,,,將繞點順時針旋轉得到,點、分別為、的中點,若點剛好落在邊上,則______.17.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.18.已知二次函數y=-x2+2x+5,當x________時,y隨x的增大而增大三、解答題(共78分)19.(8分)甲口袋中裝有3個小球,分別標有號碼1,2,3;乙口袋中裝有2個小球,分別標有號碼1,2;這些球除數字外完全相同.從甲、乙兩口袋中分別隨機地摸出一個小球,則取出的兩個小球上的號碼恰好相同的概率是多少?20.(8分)如圖,在矩形中,,為邊上一點,把沿直線折疊,頂點折疊到,連接與交于點,連接與交于點,若.(1)求證:;(2)當時,,求的長;(3)連接,直接寫出四邊形的形狀:.當時,并求的值.21.(8分)如圖,為的直徑,點為延長線上的一點,過點作的切線,切點為,過兩點分別作的垂線,垂足分別為,連接.求證:(1)平分;(2)若,求的長.22.(10分)為了解某地七年級學生身高情況,隨機抽取部分學生,測得他們的身高(單位:cm),并繪制了如下兩幅不完整的統計圖,請結合圖中提供的信息,解答下列問題.(1)填空:樣本容量為,a=;(2)把頻數分布直方圖補充完整;(3)若從該地隨機抽取1名學生,估計這名學生身高低于160cm的概率.23.(10分)解方程:(1)(公式法)(2)24.(10分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E(1)求證:DE是⊙O的切線;(2)若DE=6cm,AE=3cm,求⊙O的半徑.25.(12分)如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.(1)求拋物線的解析式.(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.26.“每天鍛煉一小時,健康生活一輩子”,學校準備從小明和小亮2人中隨機選拔一人當“陽光大課間”領操員,體育老師設計的游戲規則是:將四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖1,撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明兩人各抽取一張撲克牌,兩張牌面數字之和為奇數時,小亮當選;否則小明當選.(1)請用樹狀圖或列表法求出所有可能的結果;(2)請問這個游戲規則公平嗎?并說明理由.

參考答案一、選擇題(每題4分,共48分)1、B【分析】原價為100,第一次降價后的價格是100×(1-x),第二次降價是在第一次降價后的價格的基礎上降價的,第二次降價后的價格為:100×(1-x)×(1-x)=100(1-x)2,則可列出方程.【詳解】設平均每次降價的百分比為x,根據題意可得:100(1-x)2=81故選:B.【點睛】本題主要考查了一元二次方程的增長率問題,需注意第二次降價是在第一次降價后的價格的基礎上降價的.2、B【分析】先根據勾股定理求出AB的長,再根據余弦的定義求解即可.【詳解】∵AC=2,BC=2,∴AB=,∴cosB=.故選B.【點睛】本題考查了勾股定理,以及銳角三角函數的概念,熟練掌握銳角三角函數的定義是解答本題的關鍵.3、B【解析】試題分析:根據矩形的性質可得∠A=∠D=90°,再由根據同角的余角相等可得∠AEB=∠DFE,即可得到結果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故選B.考點:矩形的性質,相似三角形的判定點評:相似三角形的判定和性質是初中數學的重點,貫穿于整個初中數學的學習,是中考中半徑常見的知識點,一般難度不大,需熟練掌握.4、D【解析】運用因式分解法求解.【詳解】由得x(x-3)=0所以,x1=0,x2=3故選D【點睛】掌握因式分解法解一元二次方程.5、C【分析】根據圓周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度數.【詳解】解:∵∠ACB=∠AOB,

而∠AOB=180°-2×20°=140°,

∴∠ACB=×140°=70°.

故選:C.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.6、B【解析】由等腰三角形“三線合一”的性質可得EF=BF,根據H是正方形對角線BD的中點可得CH=DH=BH,即可證明HF是△BDE的中位線,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形兩銳角互余的關系可得∠CBE=∠CDG,利用ASA可證明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性質可得BD2=2CD2,根據∠CBE=∠CDG,∠E是公共角可證明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可對③進行判定,根據等底等高的三角形面積相等可對④進行判定,綜上即可得答案.【詳解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD對角線BD的中點,∴CH=DH=BH=BD,∴HF是△BDE的中位線,∴HF=DE=BD=CH,HF//DE,故①⑤正確,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正確,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③錯誤,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正確,綜上所述:正確的結論有①②④⑤,共4個,故選B.【點睛】本題考查正方形的性質、等腰三角形的性質、全等三角形的判定與性質、相似三角形的判定與性質及三角形中位線的性質,綜合性較強,熟練掌握所學性質及定理是解題關鍵.7、B【解析】主視圖是三角形的一定是一個錐體,只有B是錐體.故選B.8、B【分析】由系數即可確定與經過的象限.【詳解】解:經過第一、三象限,經過第一、三象限,B選項符合.故選:B【點睛】本題考查了一次函數與反比例函數的圖像,靈活根據的正負判斷函數經過的象限是解題的關鍵.9、C【分析】根據反比例函數圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|,得出S△AOC=S△ODB=3,再根據反比例函數的對稱性可知:OC=OD,AC=BD,即可求出四邊形ACBD的面積.【詳解】解:∵過函數的圖象上A,B兩點分別作y軸的垂線,垂足分別為點C,D,∴S△AOC=S△ODB=|k|=3,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=3,∴四邊形ABCD的面積為=S△AOC+S△ODA+S△ODB+S△OBC=4×3=1.故選C.【點睛】本題考查了反比例函數比例系數的幾何意義,一般的,從反比例函數(k為常數,k≠0)圖象上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數,以點P及點P的一個垂足和坐標原點為頂點的三角形的面積等于.10、C【分析】根據切線長定理得到PB=PA、CA=CE,DE=DB,根據三角形的周長公式計算即可.【詳解】解:∵PA、PB分別切⊙O于點A、B,

∴PB=PA=4,

∵CD切⊙O于點E且分別交PA、PB于點C,D,

∴CA=CE,DE=DB,

∴△PCD的周長=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,

故選:C.【點睛】本題考查的是切線長定理的應用,切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.11、C【分析】根據二次函數的對稱性可得,代入二次函數解析式即可求解.【詳解】解:∵,是拋物線上兩點,∴,∴且n為正數,解得,故選:C.【點睛】本題考查二次函數的性質,掌握二次函數的性質是解題的關鍵.12、A【解析】∵密碼的末位數字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數字時,要一次能打開的概率是.故選A.二、填空題(每題4分,共24分)13、【解析】試題分析:有兩組角對應相等的兩個三角形相似;兩組邊對應成比例且夾角相等的三角形相似.所以在本題的條件的需要滿足考點:相似三角形的判定點評:解答本題的的關鍵是熟練掌握有兩組角對應相等的兩個三角形相似;兩組邊對應成比例且夾角相等的三角形相似.14、2024【分析】把代入方程得出的值,再整體代入中即可求解.【詳解】把代入方程得:,即∴故填:2024.【點睛】本題考查一元二次方程的解法,運用整體代入法是解題的關鍵.15、【分析】求出一個弓形的面積乘3再加上△ABC的面積即可.【詳解】過A點作AD⊥BC,∵△ABC是等邊三角形,邊長為2,∴AC=BC=2,CD=BC=1∴AD=∴弓形面積=.故答案為:【點睛】本題考查的是陰影部分的面積,掌握扇形的面積計算及等邊三角形的面積計算是關鍵.16、【分析】根據旋轉性質及直角三角形斜邊中線等于斜邊一半,求出CD=CE=5,再根據勾股定理求DE長,的值即為等腰△CDE底角的正弦值,根據等腰三角形三線合一構建直角三角形求解.【詳解】如圖,過D點作DM⊥BC,垂足為M,過C作CN⊥DE,垂足為N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D為AB的中點,∴CD=,由旋轉可得,∠MCN=90°,MN=10,∵E為MN的中點,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案為:.【點睛】本題考查旋轉性質,直角三角形的性質和等腰三角形的性質,能夠用等腰三角形三線合一的性質構建直角三角形解決問題是解答此題的關鍵.17、【解析】解:連接AG,由旋轉變換的性質可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點睛】本題考查的是旋轉變換的性質、相似三角形的判定和性質,掌握勾股定理、矩形的性質、旋轉變換的性質是解題的關鍵.18、x<1【分析】把二次函數解析式化為頂點式,可求得其開口方向及對稱軸,利用二次函數的增減性可求得答案.【詳解】解:∵y=-x2+2x+5=-(x-1)2+6,

∴拋物線開口向下,對稱軸為x=1,

∴當x<1時,y隨x的增大而增大,

故答案為:<1.【點睛】此題考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).三、解答題(共78分)19、兩個小球的號碼相同的概率為.【解析】【試題分析】利用樹狀圖求等可能事件的概率,樹狀圖見解析.【試題解析】畫樹狀圖得:

∵共有6種等可能的結果,這兩個小球的號碼相同的有2情況,

∴這兩個小球的號碼相同的概率為:.20、(1)見解析;(2);(3)菱形,24【分析】(1)由題意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,則可證△ABE∽△DEC;

(2)設AE=x,則DE=13-x,由相似三角形的性質可得,即:,可求x的值,即可得DE=9,根據勾股定理可求CE的長;

(3)由折疊的性質可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行線的性質可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,則四邊形C'QCP是菱形,通過證△C'EQ∽△EDC,可得,即可求CE?EQ的值.【詳解】證明:(1)∵CE⊥BE,

∴∠BEC=90°,

∴∠AEB+∠CED=90°,

又∵∠ECD+∠CED=90°,

∴∠AEB=∠ECD,

又∵∠A=∠D=90°,

∴△ABE∽△DEC

(2)設AE=x,則DE=13-x,

由(1)知:△ABE∽△DEC,

∴,即:

∴x2-13x+36=0,

∴x1=4,x2=9,

又∵AE<DE

∴AE=4,DE=9,

在Rt△CDE中,由勾股定理得:

(3)如圖,

∵折疊,

∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,

∵CE⊥BC',∠BC'P=90°,

∴CE∥C'P,

∴∠C'PQ=∠CQP,

∴∠CQP=∠CPQ,

∴CQ=CP,

∴CQ=CP=C'Q=C'P,

∴四邊形C'QCP是菱形,

故答案為:菱形

∵四邊形C'QCP是菱形,

∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD

又∵∠C'EQ=∠D=90°

∴△C'EQ∽△EDC

即:CE?EQ=DC?C'Q=6×4=24【點睛】本題是相似形綜合題,考查了矩形的性質,菱形的判定和性質,折疊的性質,相似三角形的判定和性質,勾股定理等性質,靈活運用相關的性質定理、綜合運用知識是解題的關鍵.21、(1)見解析;(2)【分析】(1)連接OM,可證OM∥AC,得出∠CAM=∠AMO,由OA=OM可得∠OAM=∠AMO,從而可得出結果;(2)先求出∠MOP的度數,OB的長度,則用弧長公式可求出的長.【詳解】解:(1)連接OM,∵PE為⊙O的切線,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的長為.【點睛】本題考查了圓的切線的性質,弧長的計算,平行線的判定與性質以及等腰三角形的性質等知識,解題的關鍵是靈活運用這些知識解決問題.22、(1)故答案為100,30;(2)見解析;(3)0.1.【解析】(1)用A組的頻數除以它所占的百分比得到樣本容量,然后計算B組所占的百分比得到a的值;(2)利用B組的頻數為30補全頻數分布直方圖;(3)計算出樣本中身高低于160cm的頻率,然后利用樣本估計總體和利用頻率估計概率求解.【詳解】解:(1),所以樣本容量為100;B組的人數為,所以,則;故答案為,;(2)補全頻數分布直方圖為:(3)樣本中身高低于的人數為,樣本中身高低于的頻率為,所以估計從該地隨機抽取名學生,估計這名學生身高低于的概率為.【點睛】本題考查了利用頻率估計概率:用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.也考查了統計中的有關概念.23、(1),(2),【分析】(1)利用公式法解一元二次方程,即可得到答案;(2)利用因式分解法解一元二次方程,即可得到答案.【詳解】解:(1),∵,,,∴,∴,∴,;(2),∴,∴,∴或,∴,.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握一元二次方程的方法和步驟.24、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【分析】(1)連接OD,根據平行線的判斷方法與性質可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質,可得AD的長,又有△ACD∽△ADE.根據相似三角形的性質列出比例式,代入數據即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點:切線的判定;平行線的判定與性質;圓周角定理;相似三角形的判定與性質.25、(1)y=﹣x2﹣2x+3;(2)點P(,);(3)符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出點A的坐標,根據拋物線的對稱軸是x=﹣1,求出點C的坐標,再根據待定系數法求出拋物線的解析式即可;(2)設點P(m,﹣m2﹣2m+3),利用拋物線與直線相交,求出點B的坐標,過點P作PF∥y軸交直線AB于點F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面積,利用二次函數的最大值,即可求得點P的坐標;(3)求出點E的坐標,然后求出直線BC、直線BE、直線CE的解析式,再根據以點B、E、C、D為頂點的四邊形是平行四邊形,得到直線D1D2、直線D1D3、直線D2D3的解析式,即可求出交點坐標.【詳解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴點A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論