內蒙古自治區包頭市二中2025屆高一數學第二學期期末教學質量檢測試題含解析_第1頁
內蒙古自治區包頭市二中2025屆高一數學第二學期期末教學質量檢測試題含解析_第2頁
內蒙古自治區包頭市二中2025屆高一數學第二學期期末教學質量檢測試題含解析_第3頁
內蒙古自治區包頭市二中2025屆高一數學第二學期期末教學質量檢測試題含解析_第4頁
內蒙古自治區包頭市二中2025屆高一數學第二學期期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古自治區包頭市二中2025屆高一數學第二學期期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線過且在軸與軸上的截距相等,則的方程為()A. B.C.和 D.2.下列函數中,既是偶函數,又在上遞增的函數的個數是().①;②;③;④向右平移后得到的函數.A. B. C. D.3.經過點,斜率為2的直線在y軸上的截距為()A. B. C.3 D.54.已知扇形的弧長是8,其所在圓的直徑是4,則扇形的面積是()A.8 B.6 C.4 D.165.下列事件是隨機事件的是(1)連續兩次擲一枚硬幣,兩次都出現正面向上.(2)異性電荷相互吸引(3)在標準大氣壓下,水在℃時結冰(4)任意擲一枚骰子朝上的點數是偶數A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)6.已知等差數列的前項和為,,則()A. B. C. D.7.函數的最小值為()A. B. C. D.8.設雙曲線的左右焦點分別是,過的直線交雙曲線的左支于兩點,若,且,則雙曲線的離心率是()A. B. C. D.9.一張方桌的圖案如圖所示,將一顆豆子隨機地扔到桌面上,假設豆子不落在線上,下列事件的概率:(1)豆子落在紅色區域概率為;(2)豆子落在黃色區域概率為;(3)豆子落在綠色區域概率為;(4)豆子落在紅色或綠色區域概率為;(5)豆子落在黃色或綠色區域概率為.其中正確的結論有()A.2個 B.3個 C.4個 D.5個10.某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了如圖所示的折線圖.根據該折線圖,下列結論錯誤的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩二、填空題:本大題共6小題,每小題5分,共30分。11.函數的定義域為A,若時總有為單函數.例如,函數=2x+1()是單函數.下列命題:①函數=(xR)是單函數;②若為單函數,且則;③若f:AB為單函數,則對于任意bB,它至多有一個原象;④函數f(x)在某區間上具有單調性,則f(x)一定是單函數.其中的真命題是.(寫出所有真命題的編號)12.在數列中,若,則____.13.省農科站要檢測某品牌種子的發芽率,計劃采用隨機數表法從該品牌粒種子中抽取粒進行檢測,現將這粒種子編號如下,,,,若從隨機數表第行第列的數開始向右讀,則所抽取的第粒種子的編號是.(下表是隨機數表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795414.已知不等式的解集為,則________.15.已知,且是第一象限角,則的值為__________.16.命題“,”是________命題(選填“真”或“假”).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,求(1)(2)18.已知向量,,,.(Ⅰ)若四邊形是平行四邊形,求,的值;(Ⅱ)若為等腰直角三角形,且為直角,求,的值.19.2019年,河北等8省公布了高考改革綜合方案將采取“3+1+2”模式,即語文、數學、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學、生物中選擇2門.為了更好進行生涯規劃,甲同學對高一一年來的七次考試成績進行統計分析,其中物理、歷史成績的莖葉圖如圖所示.(1)若甲同學隨機選擇3門功課,求他選到物理、地理兩門功課的概率;(2)試根據莖葉圖分析甲同學應在物理和歷史中選擇哪一門學科?并說明理由;(3)甲同學發現,其物理考試成績(分)與班級平均分(分)具有線性相關關系,統計數據如下表所示,試求當班級平均分為50分時,其物理考試成績.參考數據:,,,.參考公式:,,(計算時精確到).20.若的最小值為.(1)求的表達式;(2)求能使的值,并求當取此值時,的最大值.21.如圖,四棱錐的底面為平行四邊形,為中點.(1)求證:平面;(2)求證:平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

對直線是否過原點分類討論,若直線過原點滿足題意,求出方程;若直線不過原點,在軸與軸上的截距相等,且不為0,設直線方程為將點代入,即可求解.【詳解】若直線過原點方程為,在軸與軸上的截距均為0,滿足題意;若直線過原點,依題意設方程為,代入方程無解.故選:B.【點睛】本題考查直線在上的截距關系,要注意過原點的直線在軸上的截距是軸上的截距的任意倍,屬于基礎題.2、B【解析】

將①②③④中的函數解析式化簡,分析各函數的奇偶性及其在區間上的單調性,可得出結論.【詳解】對于①中的函數,該函數為偶函數,當時,,該函數在區間上不單調;對于②中的函數,該函數為偶函數,且在區間上單調遞減;對于③中的函數,該函數為偶函數,且在區間上單調遞增;對于④,將函數向右平移后得到的函數為,該函數為奇函數,且當時,,則函數在區間上不單調.故選:B.【點睛】本題考查三角函數單調性與奇偶性的判斷,同時也考查了三角函數的相位變換,熟悉正弦、余弦和正切函數的基本性質是判斷的關鍵,考查推理能力,屬于中等題.3、B【解析】

寫出直線的點斜式方程,再將點斜式方程化為斜截式方程即可得解.【詳解】因為直線經過點,且斜率為2,故點斜式方程為:,化簡得:,故直線在y軸上的截距為.故選:B.【點睛】本題考查直線的方程,解題關鍵是應熟知直線的五種方程形式,屬于基礎題,4、A【解析】

直接利用扇形的面積公式求解.【詳解】扇形的弧長l=8,半徑r=2,由扇形的面積公式可知,該扇形的面積S=1故選A【點睛】本題主要考查扇形面積的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.5、D【解析】試題分析:根據隨機事件的定義:在相同條件下,可能發生也可能不發生的現象(2)是必然發生的,(3)是不可能發生的,所以不是隨機事件,故選擇D考點:隨機事件的定義6、A【解析】

利用等差數列下標和的性質可計算得到,由計算可得結果.【詳解】由得:本題正確選項:【點睛】本題考查等差數列性質的應用,涉及到等差數列下標和性質和等差中項的性質應用,屬于基礎題.7、D【解析】

令,即有,則,運用基本不等式即可得到所求最小值,注意等號成立的條件.【詳解】令,即有,則,當且僅當,即時,取得最小值.故選:【點睛】本題考查基本不等式,配湊法求解,屬于基礎題.8、C【解析】,則,所以,,則,所以,故選C。點睛:離心率問題關鍵是利用圓錐曲線的幾何性質,以及三角形的幾何關系來解決,本題中,由雙曲線的幾何性質,可以將圖中的各邊長都表示出來,再利用同一個角在兩個三角形中的余弦定理,就可以得到的等量關系,求出離心率。9、B【解析】試題分析:方桌共有塊,其中紅色的由塊,黃色的由塊,,綠色的由塊,所以(1)(2)(3)結論正確,故選擇B.這里表面上看是與面積相關的幾何概型,其實還是古典概型考點:古典概型的概率計算和事件間的關系.10、A【解析】

觀察折線圖可知月接待游客量每年7,8月份明顯高于12月份,且折線圖呈現增長趨勢,高峰都出現在7、8月份,1月至6月的月接待游客量相對于7月至12月波動性更小.【詳解】對于選項A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯;對于選項B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確;對于選項C,D,由圖可知顯然正確.故選A.【點睛】本題考查折線圖,考查考生的識圖能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、②③【解析】

命題①:對于函數,設,故和可能相等,也可能互為相反數,即命題①錯誤;命題②:假設,因為函為單函數,所以,與已知矛盾,故,即命題②正確;命題③:若為單函數,則對于任意,,假設不只有一個原象與其對應,設為,則,根據單函數定義,,又因為原象中元素不重復,故函數至多有一個原象,即命題③正確;命題④:函數在某區間上具有單調性,并不意味著在整個定義域上具有單調性,即命題④錯誤,綜上可知,真命題為②③.故答案為②③.12、【解析】

根據遞推關系式,依次求得的值.【詳解】由于,所以,.故答案為:【點睛】本小題主要考查根據遞推關系式求數列某一項的值,屬于基礎題.13、1【解析】試題分析:依據隨機數表,抽取的編號依次為785,567,199,1.第四粒編號為1.考點:隨機數表.14、-7【解析】

結合一元二次不等式和一元二次方程的性質,列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、;【解析】

利用兩角和的公式把題設展開后求得的值,進而利用的范圍判斷的范圍,利用同角三角函數的基本關系求得的值,最后利用誘導公式和對原式進行化簡,把的值和題設條件代入求解即可.【詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點睛】本題考查了兩角差的余弦公式、誘導公式以及同角三角函數的基本關系,需熟記三角函數中的公式,屬于中檔題.16、真【解析】當時,成立,即命題“,”為真命題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

利用同角三角函數基本關系式化弦為切,即可求解(1)(2)的值,得到答案.【詳解】(1)由題意,知,則;(2)由==.【點睛】本題主要考查了三角函數的化簡求值,以及同角三角函數基本關系式的應用,著重考查了推理與運算能力,屬于基礎題.18、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)由得到x,y的方程組,解方程組即得x,y的值;(Ⅱ)由題得和,解方程組即得,的值.【詳解】(Ⅰ),,,,,由,,;(Ⅱ),,為直角,則,,又,,再由,解得:或.【點睛】本題主要考查平面向量的數量積運算和模的運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1);(2)見解析;(3)見解析【解析】

(1)列出基本事件的所有情況,然后再列出滿足條件的所有情況,利用古典概率公式即可得到答案.(2)計算平均值和方差,從而比較甲同學應在物理和歷史中選擇哪一門學科;(3)先計算和,然后通過公式計算出線性回歸方程,然后代入平均值50即可得到答案.【詳解】(1)記物理、歷史分別為,思想政治、地理、化學、生物分別為,由題意可知考生選擇的情形有,,,,,,,,,,,,共12種他選到物理、地理兩門功課的滿情形有,共3種甲同學選到物理、地理兩門功課的概率為(2)物理成績的平均分為歷史成績的平均分為由莖葉圖可知物理成績的方差歷史成績的方差故從平均分來看,選擇物理歷史學科均可以;從方差的穩定性來看,應選擇物理學科;從最高分的情況來看,應選擇歷史學科(答對一點即可)(3),,關于的回歸方程為當時,,當班級平均分為50分時,其物理考試成績為73分【點睛】本題主要考查古典概型,統計數的相關含義,線性回歸方程的計算,意在考查學生的閱讀理解能力,計算能力和分析能力,難度不大.20、(1);(2)的最大值為【解析】試題分析:(1)通過同角三角函數關系將化簡,再對函數配方,然后討論對稱軸與區間的位置關系,從而求出的最小值;(2)由,則根據的解析式可知只能在內解方程,從而求出的值,即可求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論