2022年云南省峨山一中高三數學第一學期期末綜合測試模擬試題含解析_第1頁
2022年云南省峨山一中高三數學第一學期期末綜合測試模擬試題含解析_第2頁
2022年云南省峨山一中高三數學第一學期期末綜合測試模擬試題含解析_第3頁
2022年云南省峨山一中高三數學第一學期期末綜合測試模擬試題含解析_第4頁
2022年云南省峨山一中高三數學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.2.在明代程大位所著的《算法統宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.3.若集合,,則()A. B. C. D.4.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.5.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}6.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.7.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數的取值范圍是()A. B. C. D.8.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.19.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業里程達到13.1萬公里,其中高鐵營業里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數依次成等差數列10.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.11.已知,則()A.2 B. C. D.312.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加二、填空題:本題共4小題,每小題5分,共20分。13.若函數為偶函數,則________.14.已知二面角α﹣l﹣β為60°,在其內部取點A,在半平面α,β內分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.15.農歷五月初五是端午節,民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節大家都會品嘗的食品,傳說這是為了紀念戰國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.16.在正奇數非減數列中,每個正奇數出現次.已知存在整數、、,對所有的整數滿足,其中表示不超過的最大整數.則等于______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.18.(12分)設橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設點A關于軸的對稱點為C,求證:M,B,C三點共線;(3)設過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數的取值范圍.19.(12分)已知集合,集合.(1)求集合;(2)若,求實數的取值范圍.20.(12分)的內角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.21.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標為(2,1),設直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.22.(10分)在中,內角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

建立平面直角坐標系,求出直線,設出點,通過,找出與的關系.通過數量積的坐標表示,將表示成與的關系式,消元,轉化成或的二次函數,利用二次函數的相關知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設,則直線,設點,所以由得,即,所以,由及,解得,由二次函數的圖像知,,所以的取值范圍是.故選A.【點睛】本題主要考查解析法在向量中的應用,以及轉化與化歸思想的運用.2、D【解析】

設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數列,,結合等比數列的性質可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數列,且公比,則,故,,.故選:D.【點睛】本題考查數列與數學文化,考查了等比數列的性質,考查了學生的運算求解能力,屬于基礎題.3、B【解析】

根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.4、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.5、C【解析】

根據集合的并集、補集的概念,可得結果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎題.6、D【解析】

根據已知條件和等比數列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.7、D【解析】

因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.8、A【解析】

根據題意,求導后結合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據導數的幾何意義得:,即切線斜率,當且僅當等號成立,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導數的幾何意義的應用以及運用基本不等式求最值,考查計算能力.9、D【解析】

由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數列,故錯.故選:D【點睛】本題考查統計的知識,考查數據處理能力和應用意識,是基礎題10、D【解析】

由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.11、A【解析】

利用分段函數的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數值的求法,考查對數的運算和對數函數的性質,是基礎題,解題時注意函數性質的合理應用.12、C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

二次函數為偶函數說明一次項系數為0,求得參數,將代入表達式即可求解【詳解】由為偶函數,知其一次項的系數為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數,求函數值,屬于基礎題14、【解析】

作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【詳解】作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點睛】此題考查求空間三角形邊長的最值,關鍵在于根據幾何性質找出對稱關系,結合解三角形知識求解.15、【解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設球的半徑為,所以,所以球的體積.故答案為:;.【點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.16、2【解析】

將已知數列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不在,證明見詳解;(2)【解析】

(1)假設直線方程,并于拋物線方程聯立,結合韋達定理,計算,可得,然后驗證可得結果.(2)分別計算線段中垂線的方程,然后聯立,根據(1)的條件可得點的軌跡方程,然后可得焦點,結合拋物線定義可得,計算可得結果.【詳解】(1)設直線方程,根據題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應用,第(1)問中難點在于計算處,第(2)問中關鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯立方程,結合韋達定理,屬難題.18、(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解析】

設.(1)因為直線的傾斜角為,,所以直線AB的方程為,聯立方程組,消去并整理,得,則,故線段AB的中點的橫坐標為.(2)根據題意得點,若直線AB的斜率為0,則直線AB的方程為,A、C兩點重合,顯然M,B,C三點共線;若直線AB的斜率不為0,設直線AB的方程為,聯立方程組,消去并整理得,則,設直線BM、CM的斜率分別為、,則,即=,即M,B,C三點共線.(3)根據題意,得直線GH的斜率存在,設該直線的方程為,設,聯立方程組,消去并整理,得,由,整理得,又,所以,結合,得,當時,該直線為軸,即,此時橢圓上任意一點P都滿足,此時符合題意;當時,由,得,代入橢圓C的方程,得,整理,得,再結合,得到,即,綜上,得到實數的取值范圍是.19、(1);(2).【解析】

(1)求出函數的定義域,即可求出結論;(2)化簡集合,根據確定集合的端點位置,建立的不等量關系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論