




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆重慶市西南大學附中高一下數學期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為等比數列的前項和,,,則A. B. C. D.112.已知集合,,則()A. B. C. D.3.已知正實數a,b滿足,則的最小值為()A.8 B.9 C.10 D.114.我國古代名著《九章算術》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤,斬末一尺,重二斤.”意思是:“現有一根金錘,長5尺,頭部1尺,重4斤,尾部1尺,重2斤”,若該金錘從頭到尾,每一尺的重量構成等差數列,該金錘共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤5.已知數列{an}滿足a1=2A.2 B.-3 C.-126.已知扇形的半徑為,面積為,則這個扇形圓心角的弧度數為()A. B. C.2 D.47.過點的圓的切線方程是()A. B.或C.或 D.或8.在中,角,,所對的邊分別為,,,若,,,則的值為()A. B. C. D.9.在中任取一實數作為x,則使得不等式成立的概率為()A. B. C. D.10.某幾何體三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則______.12.在平面直角坐標系中,經過三點(0,0),(1,1),(2,0)的圓的方程為__________.13.函數,的值域是________.14.若(),則_______(結果用反三角函數值表示).15.等比數列的公比為,其各項和,則______________.16.的內角A,B,C的對邊分別為a,b,c.已知bsinA+acosB=0,則B=___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在中,點在邊上,為的平分線,.(1)求;(2)若,,求.18.已知,,且(1)求函數的解析式;(2)當時,的最小值是,求此時函數的最大值,并求出函數取得最大值時自變量的值19.的內角所對邊分別為,已知.(1)求;(2)若,,求的面積.20.一個盒子中裝有4張卡片,每張卡片上寫有1個數字,數字分別是1、2、3、4,現從盒子中隨機抽取卡片.(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數字之和大于或等于7的概率;(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數字2的概率.21.已知數列滿足,();(1)求、、;(2)猜想數列的通項公式;(3)用數學歸納法證明你的猜想;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意易得數列的公比代入求和公式計算可得.【詳解】設等比數列公比為q,,則,解得,,故選:C.【點睛】本題考查等比數列的求和公式和通項公式,求出數列的公比是解決問題的關鍵,屬基礎題.2、D【解析】依題意,故.3、B【解析】
由題意,得到,結合基本不等式,即可求解,得到答案.【詳解】由題意,正實數a,b滿足,則,當且僅當,即等號成立,所以的最小值為9.故選:B.【點睛】本題主要考查了利用基本不等式求解最值問題,其中解答中熟記基本不等式的使用條件,合理構造是解答的關鍵,著重考查了構造思想,以及推理與運算能,屬于據此話題.4、D【解析】
直接利用等差數列的求和公式求解即可.【詳解】因為每一尺的重量構成等差數列,,,,數列的前5項和為.即金錘共重15斤,故選D.【點睛】本題主要考查等差數列求和公式的應用,意在考查運用所學知識解答實際問題的能力,屬于基礎題.5、D【解析】
先通過列舉找到數列的周期,再利用數列的周期求值.【詳解】由題得a2所以數列的周期為4,所以a2020故選:D【點睛】本題主要考查遞推數列和數列的周期,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6、D【解析】
利用扇形面積,結合題中數據,建立關于圓心角的弧度數的方程,即可解得.【詳解】解:設扇形圓心角的弧度數為,因為扇形所在圓的半徑為,且該扇形的面積為,則扇形的面積為,解得:.故選:D.【點睛】本題在已知扇形面積和半徑的情況下,求扇形圓心角的弧度數,著重考查了弧度制的定義和扇形面積公式等知識,屬于基礎題.7、D【解析】
先由題意得到圓的圓心坐標,與半徑,設所求直線方程為,根據直線與圓相切,結合點到直線距離公式,即可求出結果.【詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【點睛】本題主要考查求過圓外一點的切線方程,根據直線與圓相切,結合點到直線距離公式即可求解,屬于常考題型.8、B【解析】
先利用面積公式得到,再利用余弦定理得到【詳解】余弦定理:故選B【點睛】本題考查了面積公式和余弦定理,意在考查學生的計算能力.9、C【解析】
先求解不等式,再利用長度型的幾何概型概率公式求解即可【詳解】由題,因為,解得,則,故選:C【點睛】本題考查長度型的幾何概型,考查解對數不等式10、B【解析】試題分析:該幾何體是正方體在兩個角各挖去四分之一個圓柱,因此.故選B.考點:三視圖,體積.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用同角三角函數的基本關系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結合的范圍,求得的值.【詳解】,,,,,,故答案:.【點睛】本題主要考查同角三角函數的基本關系,兩角和的正切公式,二倍角的正切公式,根據三角函數的值求角,屬于基礎題.12、【解析】分析:由題意利用待定系數法求解圓的方程即可.詳解:設圓的方程為,圓經過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數,所以應該有三個獨立等式.13、【解析】
利用正切函數在單調遞增,求得的值域為.【詳解】因為函數在單調遞增,所以,,故函數的值域為.【點睛】本題考查利用函數的單調性求值域,注意定義域、值域要寫成區間的形式.14、【解析】
根據反三角函數以及的取值范圍,求得的值.【詳解】由于,所以,所以.故答案為:【點睛】本小題主要考查已知三角函數值求角,考查反三角函數,屬于基礎題.15、【解析】
利用等比數列各項和公式可得出關于的方程,解出即可.【詳解】由于等比數列的公比為,其各項和,可得,解得.故答案為:.【點睛】本題考查等比數列中基本量的計算,利用等比數列各項和公式列等式是關鍵,考查計算能力,屬于基礎題.16、.【解析】
先根據正弦定理把邊化為角,結合角的范圍可得.【詳解】由正弦定理,得.,得,即,故選D.【點睛】本題考查利用正弦定理轉化三角恒等式,滲透了邏輯推理和數學運算素養.采取定理法,利用轉化與化歸思想解題.忽視三角形內角的范圍致誤,三角形內角均在范圍內,化邊為角,結合三角函數的恒等變化求角.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)令,正弦定理,得,代入面積公式計算得到答案.(2)由題意得到,化簡得到,,再利用面積公式得到答案.【詳解】(1)因為的平分線,令在中,,由正弦定理,得所以.(2)因為,所以,又由,得,,因為,所以所以.【點睛】本題考查了面積的計算,意在考查學生靈活利用正余弦定理和面積公式解決問題的能力.18、(1)(2)【解析】試題分析:(1)由向量的數量積運算代入點的坐標得到三角函數式,運用三角函數基本公式化簡為的形式;(2)由定義域可得到的范圍,結合函數單調性求得函數最值及對應的自變量值試題解析:(1)即(2)由,,,,,此時,考點:1.向量的數量積運算;2.三角函數化簡及三角函數性質19、(1);(2)5.【解析】
(1)根據正弦定理得,化簡即得C的值;(2)先利用余弦定理求出a的值,再求的面積.【詳解】(1)因為,根據正弦定理得,又,從而,由于,所以.(2)根據余弦定理,而,,,代入整理得,解得或(舍去).故的面積為.【點睛】本題主要考查正弦余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.20、(1)(2)【解析】
古典概型要求能夠列舉出所有事件和發生事件的個數,本題可以列舉出所有事件,概率問題同其他的知識點結合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(1)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數字全部可能的結果,可以列舉出,而滿足條件的事件數字之和大于7的,可以從列舉出的結果中看出.(2)列舉出每次抽1張,連續抽取兩張全部可能的基本結果,而滿足條件的事件是兩次抽取中至少一次抽到數字3,從前面列舉出的結果中找出來.解:(Ⅰ)設A表示事件“抽取3張卡片上的數字之和大于或等于7”,任取三張卡片,三張卡片上的數字全部可能的結果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4種,數字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3種,所以P(A)=.(Ⅱ)設B表示事件“至少一次抽到2”,第一次抽1張,放回后再抽取1張的全部可能結果為:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個事件B包含的結果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2)(4、2),共7個所以所求事件的概率為P(B)=.21、(1),,;(2);(3)證明見解析;【解析】
(1)根據數列的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45457.2-2025重型燃氣輪機葉片無損檢測第2部分:視覺檢測
- 疫苗接種與群體免疫動力學考核試卷
- 管道工程社會責任報告與評估考核試卷
- 禮儀用品行業服務品質管理考核試卷
- 組織文化與員工參與度考核試卷
- 原動設備制造企業的戰略管理與規劃考核試卷
- 租賃設備的市場調研方法與技巧考核試卷
- 禮儀用品行業市場風險防范考核試卷
- 稀土金屬壓延加工的智能化制造趨勢分析考核試卷
- 天津農學院《發動機原理》2023-2024學年第二學期期末試卷
- 畢業設計(論文)-人形機器人設計
- 2022年新高考山東政治高考真題(含答案)
- 新能源電力設備項目立項報告(模板范本)
- 第六章 納米復合材料
- 萬能外圓磨床作業指導書
- SAP-BASIS-常維護手冊
- 乙炔氣柜施工方案
- 兒童故事小壁虎借尾巴ppt課件
- 《春日》PPT課件
- 屋頂分布式光伏發電項目資金申請報告寫作模板
- 公路路基土建工程項目拌合站建設方案詳細
評論
0/150
提交評論