




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖南省湘西2024年數(shù)學高一下期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列滿足,,則()A. B. C. D.2.在中秋的促銷活動中,某商場對9月14日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為萬元,則10時到11時的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元3.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.4.“”是“直線:與直線:垂直”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.函數(shù)在上零點的個數(shù)為()A.2 B.3 C.4 D.56.用輾轉(zhuǎn)相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.67.祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學家祖沖之的兒子祖暅首先提出來的.祖暅原理的內(nèi)容是:“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個平面的平面去截三個幾何體,如果得到的三個截面面積總相等,那么,下面關系式正確的是()A.,, B.,,C.,, D.,,8.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.9.數(shù)列{an}的通項公式an=,若{an}前n項和為24,則n為().A.25 B.576 C.624 D.62510.下列不等式中正確的是()A.若,,則B.若,則C.若,則D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.若八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的方差是______12.已知數(shù)列的前n項和,則___________.13.已知方程的兩根分別為、、且,且__________.14.已知圓錐的頂點為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.15.程的解為______.16.已知,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若數(shù)列中存在三項,按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。(1)在無窮數(shù)列中,,,求數(shù)列的通項公式;(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.18.已知,函數(shù),.(1)若在上單調(diào)遞增,求正數(shù)的最大值;(2)若函數(shù)在內(nèi)恰有一個零點,求的取值范圍.19.在△ABC中,角A,B,C所對的邊分別是a,b,c,a=7,b=8,.(1)求邊AB的長;(2)求△ABC的面積.20.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).21.已知函數(shù),且.(1)求的值;(2)若在上有且只有一個零點,,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由題意可得,所以,故,選C.考點:本題主要考查等比數(shù)列性質(zhì)及基本運算.2、C【解析】分析:先根據(jù)12時到14時的銷售額為萬元求出總的銷售額,再求10時到11時的銷售額.詳解:設總的銷售額為x,則.10時到11時的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時到11時的銷售額為.故答案為C.點睛:(1)本題主要考查頻率分布直方圖求概率、頻數(shù)和總數(shù),意在考查學生對這些基礎知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.3、D【解析】
過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).4、A【解析】試題分析:由題意得,直線與直線垂直,則,解得或,所以“”是“直線與直線垂直”的充分不必要條件,故選A.考點:兩條直線的位置關系及充分不必要條件的判定.5、D【解析】
在同一直角坐標系下,分別作出與的圖象,結(jié)合函數(shù)圖象即可求解.【詳解】解:由題意知:函數(shù)在上零點個數(shù),等價于與的圖象在同一直角坐標系下交點的個數(shù),作圖如下:由圖可知:函數(shù)在上有個零點.故選:D【點睛】本題考查函數(shù)的零點的知識,考查數(shù)形結(jié)合思想,屬于中檔題.6、B【解析】
根據(jù)輾轉(zhuǎn)相除法計算最大公約數(shù).【詳解】因為所以最大公約數(shù)是8,選B.【點睛】本題考查輾轉(zhuǎn)相除法,考查基本求解能力.7、D【解析】
由祖暅原理可知:三個幾何體的體積相等,根據(jù)椎體體積公式即可求解.【詳解】由祖暅原理可知:三個幾何體的體積相等,則,解得,由,解得,所以.故選:D【點睛】本題考查了椎體的體積公式,需熟記公式,屬于基礎題.8、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關幾何體體積公式進行計算.由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.9、C【解析】an==-(),前n項和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.10、D【解析】
根據(jù)不等式的性質(zhì)逐一判斷即可得解.【詳解】解:對于選項A,若,,不妨取,則,即A錯誤;對于選項B,若,當時,則,即B錯誤;對于選項C,若,不妨取,則,即C錯誤;對于選項D,若,則,即,,即D正確,故選:D.【點睛】本題考查了不等式的性質(zhì),屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.1【解析】
先求出這組數(shù)據(jù)的平均數(shù),由此能求出這組數(shù)據(jù)的方差.【詳解】八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的平均數(shù)為:(87+88+90+91+92+93+93+94)=91,∴這組數(shù)據(jù)的方差為:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案為1.1.【點睛】本題考查方差的求法,考查平均數(shù)、方差的性質(zhì)等基礎知識,考查了推理能力與計算能力,是基礎題.12、17【解析】
根據(jù)所給的通項公式,代入求得,并由代入求得.即可求得的值.【詳解】數(shù)列的前n項和,則,而,,所以,則,故答案為:.【點睛】本題考查了數(shù)列前n項和通項公式的應用,遞推法求數(shù)列的項,屬于基礎題.13、【解析】
由韋達定理和兩角和的正切公式可得,進一步縮小角的范圍可得,進而可求.【詳解】方程兩根、,,,,又,,,,,,,結(jié)合,,故答案為.【點睛】本題考查兩角和與差的正切函數(shù),涉及韋達定理,屬中檔題.14、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點睛:此題為填空題的壓軸題,實際上并不難,關鍵在于根據(jù)題意作出相應圖形,利用平面幾何知識求解相應線段長,代入圓錐體積公式即可.15、【解析】
設,即求二次方程的正實數(shù)根,即可解決問題.【詳解】設,即轉(zhuǎn)化為求方程的正實數(shù)根由得或(舍)所以,則故答案為:【點睛】本題考查指數(shù)型二次方程,考查換元法,屬于基礎題.16、【解析】
由題意得出,然后在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】由題意得出.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關鍵,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)不是,證明見解析;(3)證明見解析.【解析】
(1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項公式可間接求出;(2)假設數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;(3)設等差數(shù)列的公差為,假設存在三項使得,展開得出,從而可得知,當,時,原命題成立.【詳解】(1),得,即,且.所以,數(shù)列是以為首項,以為公比的等比數(shù)列,則,因此,;(2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.假設數(shù)列是“等比源數(shù)列”,則存在三項、、,設.由于數(shù)列為單調(diào)遞增的正項數(shù)列,則,所以.得,化簡得,等式兩邊同時除以得,,且、、,則,,,,則為偶數(shù),為奇數(shù),等式不成立.因此,數(shù)列中不存在任何三項,按一定的順序排列構(gòu)成“等比源數(shù)列”;(3)不妨設等差數(shù)列的公差.當時,等差數(shù)列為非零常數(shù)列,此時,數(shù)列為“等比源數(shù)列”;當時,,則且,數(shù)列中必有一項,為了使得數(shù)列為“等比源數(shù)列”,只需數(shù)列中存在第項、第項使得,且有,即,,當時,即當,時,等式成立,所以,數(shù)列中存在、、成等比數(shù)列,因此,等差數(shù)列是“等比源數(shù)列”.【點睛】本題考查數(shù)列新定義“等比源數(shù)列”的應用,同時也考查了利用待定系數(shù)法求數(shù)列的通項,也考查“等比源數(shù)列”的證明,考查計算能力與推理能力,屬于難題.18、(1)(2)【解析】
(1)求出的單調(diào)遞增區(qū)間,令,得,可知區(qū)間,即可求出正數(shù)的最大值;(2)令,當時,,可將問題轉(zhuǎn)化為在的零點問題,分類討論即可求出答案.【詳解】解:(1)由,得,.因為在上單調(diào)遞增,令,得時單調(diào)遞增,所以解得,可得正數(shù)的最大值為.(2),設,當時,.它的圖形如圖所示.又,則,,令,則函數(shù)在內(nèi)恰有一個零點,可知在內(nèi)最多一個零點.①當0為的零點時,顯然不成立;②當為的零點時,由,得,把代入中,得,解得,,不符合題意.③當零點在區(qū)間時,若,得,此時零點為1,即,由的圖象可知不符合題意;若,即,設的兩根分別為,,由,且拋物線的對稱軸為,則兩根同時為正,要使在內(nèi)恰有一個零點,則一個根在內(nèi),另一個根在內(nèi),所以解得.綜上,的取值范圍為.【點睛】本題考查了三角函數(shù)的單調(diào)性的應用,考查了函數(shù)的零點,考查了分類討論的數(shù)學思想,考查了學生的推理能力與計算求解能力,屬于難題.19、(1)AB的長為1.(2)6.【解析】
(1)利用余弦定理解方程,解方程求得的長.(2)根據(jù)的值,求得的值,由三角形面積公式,求得三角形的面積.【詳解】(1)∵a=7,b=8,.∴由余弦定理b2=a2+c2﹣2accosB,可得:64=49+c2﹣2,可得:c2+2c﹣15=0,∴解得:c=1,或﹣5(舍去),可得:AB的長為1.(2)∵,B∈(0,π),∴sinB,又a=7,c=1,∴S△ABCacsinB6.【點睛】本小題主要考查余弦定理解三角形,考查三角形的面積公式,考查同角三角函數(shù)的基本關系式,考查運算求解能力,屬于基礎題.20、(1)詳見解析;(2)99.【解析】
(1)利用數(shù)列遞推公式取倒數(shù),變形可得,從而可證數(shù)列為等比數(shù)列;(2)確定數(shù)列的通項,利用等比數(shù)列的求和公式求和,即可求最大的正整數(shù).【詳解】解(1)∵,∴,∵,∴∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子競技活動承包合同
- 倉庫租賃協(xié)議解除流程
- 鐵路旅客運輸服務鐵路客運服務補救課件
- 2025年廣西高考數(shù)學適應性試卷(4月份)(含答案)
- 保姆與家長的互動頻率協(xié)議
- 鐵路橋隧無損檢測任務一檢測意義方法及原理23課件
- 鐵路調(diào)車綜合實訓調(diào)車手信號課件
- 鐵路運輸市場營銷宏觀環(huán)境分析課件
- 中國人的臉課件
- 中國上課課件
- 煤礦隱蔽致災因素普查課件
- 項目七-質(zhì)譜法及其在食品分析中的應用001課件
- 《預防未成年人犯罪》主題班會
- 建設項目安全設施“三同時”審批流程圖
- 軟件系統(tǒng)功能需求調(diào)研表(信息系統(tǒng)項目需求調(diào)研表)
- 中國電信LTE網(wǎng)絡質(zhì)量評估測試規(guī)范(試行稿)V1
- 藍牙音響成品檢驗規(guī)范
- 材料5:個人征信系統(tǒng)機構(gòu)接入和接口驗收工作流程
- 項目選址比選方案分析參考范本
- 中機2015~2016年消防系統(tǒng)維保養(yǎng)護年度總結(jié)報告
- 預制混凝土襯砌管片生產(chǎn)工藝技術規(guī)程doc
評論
0/150
提交評論