




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年陜西省寶雞市中考三模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在中,,,,則的值是()A. B. C. D.2.如圖中任意畫一個點,落在黑色區域的概率是()A. B. C.π D.503.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(
)A. B. C. D.4.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)5.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發,繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側面剪開并展開,所得側面展開圖是()A. B.C. D.6.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC,若∠CAB=22.5°,CD=8cm,則⊙O的半徑為()A.8cm B.4cm C.4cm D.5cm7.人的頭發直徑約為0.00007m,這個數據用科學記數法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1058.的相反數是A.4 B. C. D.9.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF10.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據測定,楊絮纖維的直徑約為0.0000105m,該數值用科學記數法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣711.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.12.已知數a、b、c在數軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知是方程組的解,則3a﹣b的算術平方根是_____.14.我們知道:四邊形具有不穩定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.15.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內角和是其外角和的2倍.③函數y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.16.已知三角形兩邊的長分別為1、5,第三邊長為整數,則第三邊的長為_____.17.分解因式:2x2﹣8xy+8y2=.18.如圖是一組有規律的圖案,圖案1是由4個組成的,圖案2是由7個組成的,那么圖案5是由個組成的,依此,第n個圖案是由個組成的.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統計圖.請你根據圖中提供的信息完成下列問題:(1)求被調查學生的人數,并將條形統計圖補充完整;(2)求扇形統計圖中的A等對應的扇形圓心角的度數;(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?20.(6分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.21.(6分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點P從點A出發,沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點P作PQ⊥AB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉90°,得到線段PR,連接QR.設△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).(1)當點R與點B重合時,求t的值;(2)當點P在BC邊上運動時,求線段PQ的長(用含有t的代數式表示);(3)當點R落在?ABCD的外部時,求S與t的函數關系式;(4)直接寫出點P運動過程中,△PCD是等腰三角形時所有的t值.22.(8分)如圖,已知△ABC.(1)請用直尺和圓規作出∠A的平分線AD(不要求寫作法,但要保留作圖痕跡);(2)在(1)的條件下,若AB=AC,∠B=70°,求∠BAD的度數.23.(8分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.24.(10分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.25.(10分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點A順時針旋轉,把AC邊繞點A逆時針旋轉,得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補三角形”,△AB'C′的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當△ABC是任意三角形時,猜想AD與BC的數量關系,并證明你的猜想;(拓展應用)(3)如圖1.點A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點P是四邊形ABCD內一點,且△APD是△BPC的“旋補三角形”,點P是“旋補中心”,請確定點P的位置(要求尺規作圖,不寫作法,保留作圖痕跡),并求BC的長.26.(12分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.27.(12分)某工廠生產部門為了解本部門工人的生產能力情況,進行了抽樣調查.該部門隨機抽取了30名工人某天每人加工零件的個數,數據如下:202119162718312921222520192235331917182918352215181831311922整理上面數據,得到條形統計圖:樣本數據的平均數、眾數、中位數如下表所示:統計量平均數眾數中位數數值23m21根據以上信息,解答下列問題:上表中眾數m的值為;為調動工人的積極性,該部門根據工人每天加工零件的個數制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據來確定獎勵標準比較合適.(填“平均數”、“眾數”或“中位數”)該部門規定:每天加工零件的個數達到或超過25個的工人為生產能手.若該部門有300名工人,試估計該部門生產能手的人數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
首先根據勾股定理求得AC的長,然后利用正弦函數的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點睛】本題考查了三角函數的定義,求銳角的三角函數值的方法:利用銳角三角函數的定義,轉化成直角三角形的邊長的比.2、B【解析】
抓住黑白面積相等,根據概率公式可求出概率.【詳解】因為,黑白區域面積相等,所以,點落在黑色區域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區域面積關系.3、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯系是解題的關鍵.4、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【點睛】本題考查了切線的性質,坐標與圖形性質,解題的關鍵是掌握切線的性質和坐標計算.5、D【解析】
此題運用圓錐的性質,同時此題為數學知識的應用,由題意蝸牛從P點出發,繞圓錐側面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側面爬行的最短路線應該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發,繞圓錐側面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側面展開圖還原成圓錐后,位于母線OM上的點P應該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學生的空間想象能力.6、C【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.【詳解】解:連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴故選:C.【點睛】此題考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是解本題的關鍵.7、B【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.00007m,這個數據用科學記數法表示7×10﹣1.故選:B.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.8、A【解析】
直接利用相反數的定義結合絕對值的定義分析得出答案.【詳解】-1的相反數為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數,正確把握相關定義是解題的關鍵.9、B【解析】【分析】根據平行線的判定方法結合已知條件逐項進行分析即可得.【詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【點睛】本題考查了平行四邊形的性質與判定,熟練掌握平行四邊形的判定定理與性質定理是解題的關鍵.10、C【解析】試題分析:絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數法.11、C【解析】試題解析:左視圖如圖所示:故選C.12、C【解析】
首先根據數軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.【解析】
靈活運用方程的性質求解即可。【詳解】解:由是方程組的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術平方根是,故答案:【點睛】本題主要考查二元一次方程組的性質及其解法。14、【解析】分析:根據勾股定理,可得,根據平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.15、②④⑤【解析】
根據不等式的性質可確定①的對錯,根據多邊形的內外角和可確定②的對錯,根據函數自變量的取值范圍可確定③的對錯,根據三角形中位線的性質可確定④的對錯,根據正方形的性質可確定⑤的對錯.【詳解】①“若a>b,當c<0時,則<,故①是假命題;②六邊形的內角和是其外角和的2倍,根據②真命題;③函數y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【點睛】本題考查了不等式的性質、多邊形的內外角和、函數自變量的取值范圍、三角形中位線的性質、正方形的性質,解答本題的關鍵是熟練掌握各知識點.16、2【解析】分析:根據三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據第三邊是整數求解.詳解:根據三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數,則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數這一條件.17、1(x﹣1y)1【解析】試題分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案為:1(x﹣1y)1.考點:提公因式法與公式法的綜合運用18、16,3n+1.【解析】
觀察不難發現,后一個圖案比前一個圖案多3個基礎圖形,然后寫出第5個和第n個圖案的基礎圖形的個數即可.【詳解】由圖可得,第1個圖案基礎圖形的個數為4,第2個圖案基礎圖形的個數為7,7=4+3,第3個圖案基礎圖形的個數為10,10=4+3×2,…,第5個圖案基礎圖形的個數為4+3(5?1)=16,第n個圖案基礎圖形的個數為4+3(n?1)=3n+1.故答案為16,3n+1.【點睛】本題考查了規律型:圖形的變化類,根據圖像發現規律是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)圖見解析;(2)126°;(3)1.【解析】
(1)利用被調查學生的人數=了解程度達到B等的學生數÷所占比例,即可得出被調查學生的人數,由了解程度達到C等占到的比例可求出了解程度達到C等的學生數,再利用了解程度達到A等的學生數=被調查學生的人數-了解程度達到B等的學生數-了解程度達到C等的學生數-了解程度達到D等的學生數可求出了解程度達到A等的學生數,依此數據即可將條形統計圖補充完整;(2)根據A等對應的扇形圓心角的度數=了解程度達到A等的學生數÷被調查學生的人數×360°,即可求出結論;(3)利用該校現有學生數×了解程度達到A等的學生所占比例,即可得出結論.【詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統計圖中的A等對應的扇形圓心角為126°.(3)1500×=1(人).答:該校學生對政策內容了解程度達到A等的學生有1人.【點睛】本題考查了條形統計圖、扇形統計圖以及用樣本估計總體,觀察條形統計圖及扇形統計圖,找出各數據,再利用各數量間的關系列式計算是解題的關鍵.20、(1)證明見解析;(2)CD的長為2.【解析】
(1)首先證得△ADE≌△CDE,由全等三角形的性質可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據30°的性質和勾股定理可求出EF和DF的長,在Rt△CEF中,根據勾股定理可求出CF的長,從而可求CD的長.【詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【點睛】本題考查了全等三角形的判定與性質,平行線的性質,菱形的判定,含30°的直角三角形的性質,勾股定理.證明AD=BC是解(1)的關鍵,作EF⊥CD于F,構造直角三角形是解(2)的關鍵.21、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】
(1)根據題意點R與點B重合時t+t=3,即可求出t的值;(2)根據題意運用t表示出PQ即可;(3)當點R落在□ABCD的外部時可得出t的取值范圍,再根據等量關系列出函數關系式;(3)根據等腰三角形的性質即可得出結論.【詳解】解:(1)∵將線段PQ繞點P順時針旋轉90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當運動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點R與點B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當點P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當DC=DP1=3時,易知AP1=3,t=3.②當DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當CD=CP3時,t=4.④當CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點睛】本題考查四邊形綜合題、動點問題、平行四邊形的性質、多邊形的面積、等腰三角形的判定和性質等知識,解題的關鍵是學會用分類討論的思想解決問題,學會利用參數構建方程解決問題,屬于中考壓軸題.22、(1)見解析;(2)20°;【解析】
(1)尺規作一個角的平分線是基本尺規作圖,根據作圖步驟即可畫圖;(2)運用等腰三角形的性質再根據角平分線的定義計算出∠BAD的度數即可.【詳解】(1)如圖,AD為所求;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠BDA=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.【點睛】考查角平分線的作法以及等腰三角形的性質,掌握角平分線的作法是解題的關鍵.23、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為
.【解析】
(1)根據勾股定理解答即可;(2)設AE=x,根據全等三角形的性質和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據折疊的性質知:Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據勾股定理,得:GF,即PF+PC的最小值為.【點睛】本題考查了四邊形的綜合題,涉及了折疊的性質、勾股定理的應用、相似三角形的判定和性質等知識,知識點較多,難度較大,解答本題的關鍵是掌握設未知數列方程的思想.24、(1)直線l與⊙O相切;(2)證明見解析;(3)214【解析】試題分析:(1)連接OE、OB、OC.由題意可證明BE=(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據等角對等邊證明BE=EF即可;(3)先求得BE的長,然后證明△BED∽△AEB,由相似三角形的性質可求得AE的長,于是可得到AF的長.試題解析:(1)直線l與⊙O相切.理由如下:如圖1所示:連接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直線l與⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考點:圓的綜合題.25、(1)①2;②3;(2)AD=12【解析】
(1)①根據等邊三角形的性質可得出AB=AC=1、∠BAC=60,結合“旋補三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長度;
②由“旋補三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進而可得出△ABC≌△AB′C′(SAS),根據全等三角形的性質可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長度;(2)AD=12BC,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據平行四邊形的性質結合“旋補三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進而可證出△BAC≌△AB′E(SAS),根據全等三角形的性質可得出BC=AE,由平行四邊形的對角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=12故答案為:①2;②3.(2)AD=12證明:在圖1中,過點B′作B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年鳳梨酥項目投資價值分析報告
- 2025年環境實驗機項目可行性研究報告
- 電力現場安全培訓
- 2025年全科醫師考試知識更新策略試題及答案
- 復習要點2025年臨床執業醫師考試試題及答案
- 2025年發熱塊項目可行性研究報告
- 中小學教師資格考試中自主學習的試題及答案
- 2025年養正蜜丸項目可行性研究報告
- 2024年醫學基礎知識方法論試題及答案
- oracle基礎面試題及答案
- 財務報表分析-第五章 營運能力分析
- mm立式矯直機輥系設計
- (教學設計)專題4 第2單元 基礎課時13 羧酸的性質及應用2023-2024學年新教材高中化學選擇性必修3(蘇教版2019)
- 《建筑玻璃膜應用技術規程 JGJT351-2015》
- 2024年黑龍江龍東地區初中畢業學業統一考試中考物理試卷(真題+答案解析)
- 人教版音樂三年級下冊第五單元 打字機 教案
- 國際物流專員聘用協議
- 《探究杠桿的平衡條件》說課稿(全國實驗說課大賽獲獎案例)
- 2024年廣東省公需課《百縣千鎮萬村高質量發展工程與城鄉區域協調發展》考試答案
- 2024年江西省初中學業水平考試數學試題卷
- 《小蝦》學習任務群教學課件
評論
0/150
提交評論