2022年福建省漳州市中考數學適應性模擬試題含解析_第1頁
2022年福建省漳州市中考數學適應性模擬試題含解析_第2頁
2022年福建省漳州市中考數學適應性模擬試題含解析_第3頁
2022年福建省漳州市中考數學適應性模擬試題含解析_第4頁
2022年福建省漳州市中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年福建省漳州市中考數學適應性模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若x是2的相反數,|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或42.已知一次函數y=kx+b的圖象如圖,那么正比例函數y=kx和反比例函數y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.3.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.4.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內切 B.外切 C.相交 D.外離5.如圖,小穎為測量學校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m6.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.7.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關系是()A.相交B.內切C.外離D.內含8.下列計算正確的是()A.a6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=19.不透明袋子中裝有一個幾何體模型,兩位同學摸該模型并描述它的特征.甲同學:它有4個面是三角形;乙同學:它有8條棱.該模型的形狀對應的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐10.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.811.反比例函數是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限12.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一組數據:3,3,4,5,5,則它的方差為____________14.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.15.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.16.若a是方程的根,則=_____.17.一個圓錐的側面展開圖是半徑為8cm、圓心角為120°的扇形,則此圓錐底面圓的半徑為________.18.因式分解:_______________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.20.(6分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;21.(6分)已知關于的一元二次方程(為實數且).求證:此方程總有兩個實數根;如果此方程的兩個實數根都是整數,求正整數的值.22.(8分)先化簡,再求值:(),其中=23.(8分)(1)計算:.(2)解方程:x2﹣4x+2=024.(10分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.25.(10分)如圖所示,某小組同學為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據以上數據,求出樓AB的高度.(精確到0.1米)(參考數據:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)26.(12分)解不等式組,并將它的解集在數軸上表示出來.27.(12分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

直接利用相反數以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數,|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數的混合運算,正確得出x,y的值是解題關鍵.2、C【解析】試題分析:如圖所示,由一次函數y=kx+b的圖象經過第一、三、四象限,可得k>1,b<1.因此可知正比例函數y=kx的圖象經過第一、三象限,反比例函數y=的圖象經過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數的圖象;2、一次函數的圖象;3、一次函數圖象與系數的關系3、C【解析】

利用相似三角形的性質即可判斷.【詳解】設AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.4、C【解析】

兩圓內含時,無公切線;兩圓內切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內公切線的條數.5、D【解析】

根據題意得出△ABE∽△CDE,進而利用相似三角形的性質得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故選:D.【點睛】本題考查的是相似三角形在實際生活中的應用,根據題意得出△ABE∽△CDE是解答此題的關鍵.6、C【解析】

根據關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,可得答案.【詳解】解:點,與點關于軸對稱的點的坐標是,

故選:C.【點睛】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;關于原點對稱的點,橫坐標與縱坐標都互為相反數.7、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據圓心距與半徑之間的數量關系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關系.8、D【解析】解:A.a6÷a2=a4,故A錯誤;B.(﹣2)﹣1=﹣,故B錯誤;C.(﹣3x2)?2x3=﹣6x5,故C錯;D.(π﹣3)0=1,故D正確.故選D.9、D【解析】試題分析:根據有四個三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個三角形的面,四棱柱沒有三角形的面,三棱錐有四個三角形的面,但是只有6條棱.故選D考點:幾何體的形狀10、B【解析】

根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵11、B【解析】

解:∵反比例函數是y=中,k=2>0,

∴此函數圖象的兩個分支分別位于一、三象限.

故選B.12、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數圖象與幾何變換.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】根據題意先求出這組數據的平均數是:(3+3+4+5+5)÷5=4,再根據方差公式求出這組數據的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.14、1【解析】

作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.15、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最小.詳解:如圖,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質,相似三角形的判定與性質等,找出點E的位置是解題的關鍵.16、1【解析】

利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,

∴3a2-a-2=0,

∴3a2-a=2,

∴==5-2×2=1.

故答案為:1.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.17、cm【解析】試題分析:把扇形的弧長等于圓錐底面周長作為相等關系,列方程求解.設此圓錐的底面半徑為r,根據圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,r=cm.考點:圓錐側面展開扇形與底面圓之間的關系18、x3(y+1)(y-1)【解析】

先提取公因式x3,再利用平方差公式分解可得.【詳解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案為x3(y+1)(y-1).【點睛】本題主要考查提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握一般整式的因式分解的步驟--先提取公因式,再利用公式法分解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1),(2)【解析】解:(1)畫樹狀圖得:∵總共有9種等可能情況,每人獲勝的情形都是3種,∴兩人獲勝的概率都是.(2)由(1)可知,一局游戲每人勝、負、和的機會均等,都為.任選其中一人的情形可畫樹狀圖得:∵總共有9種等可能情況,當出現(勝,勝)或(負,負)這兩種情形時,贏家產生,∴兩局游戲能確定贏家的概率為:.(1)根據題意畫出樹狀圖或列表,由圖表求得所有等可能的結果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案.(2)因為由(1)可知,一局游戲每人勝、負、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結果與進行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案.20、(1)2(2)當x=4時,y最小=88平方米【解析】(1)根據題意得方程解即可;(2)設苗圃園的面積為y,根據題意得到二次函數的解析式y=x(31-2x)=-2x2+31x,根據二次函數的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=88“點睛”此題考查了二次函數、一元二次不等式的實際應用問題,解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.21、(1)證明見解析;(2)或.【解析】

(1)求出△的值,再判斷出其符號即可;(2)先求出x的值,再由方程的兩個實數根都是整數,且m是正整數求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個實數根.(2)∵,∴,.∵方程的兩個實數根都是整數,且是正整數,∴或.∴或.【點睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關系是解答此題的關鍵.22、【解析】分析:首先將括號里面的分式進行通分,然后將分式的分子和分母進行因式分解,然后將除法改成乘法進行約分化簡,最后將a的值代入化簡后的式子得出答案.詳解:原式=將原式=點睛:本題主要考查的是分式的化簡求值,屬于簡單題型.解決這個問題的關鍵就是就是將括號里面的分式進行化成同分母.23、(1)-1;(2)x1=2+,x2=2﹣【解析】

(1)按照實數的運算法則依次計算即可;(2)利用配方法解方程.【詳解】(1)原式=﹣2﹣1+2×=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=±,∴x1=2+,x2=2﹣.【點睛】此題考查計算能力,(1)考查實數的計算,正確掌握絕對值的定義,零次冪的定義,特殊角度的三角函數值是解題的關鍵;(2)是解一元二次方程,能根據方程的特點選擇適合的解法是解題的關鍵.24、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】

(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結合函數圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數圖象可知:當0<t<1時,拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為0<t<1.③如圖2所示:∵PQ∥AC且PQ=AC,∴四邊形ACQP為平行四邊形,又∵點C的縱坐標為-1,∴點P的縱坐標為1,將y=1代入拋物線的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.∴點P的坐標為(+2,1)或(-+2,1),當點P(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論