




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海市十一校高三第二次模擬考試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面平面,且是正方形,在正方形內部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.2.若復數滿足(為虛數單位),則其共軛復數的虛部為()A. B. C. D.3.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.4.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.5.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)6.設集合,,若集合中有且僅有2個元素,則實數的取值范圍為A. B.C. D.7.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.8.已知集合,集合,則().A. B.C. D.9.已知復數和復數,則為A. B. C. D.10.已知函數滿足,且,則不等式的解集為()A. B. C. D.11.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內隨機取一點,則該點取自陰影區域內(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.12.設是虛數單位,,,則()A. B. C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,,且,則向量與的夾角的大小為________.14.已知是函數的極大值點,則的取值范圍是____________.15.為了抗擊新型冠狀病毒肺炎,某醫藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.16.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著小汽車的普及,“駕駛證”已經成為現代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統計,得到下表:考試情況男學員女學員第1次考科目二人數1200800第1次通過科目二人數960600第1次未通過科目二人數240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產生的補考費用之和為元,求的分布列與數學期望.18.(12分)為踐行“綠水青山就是金山銀山”的發展理念和提高生態環境的保護意識,高二年級準備成立一個環境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環保知識競賽.(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發生的概率;(2)用表示抽取的4人中文科女生的人數,求的分布列和數學期望.19.(12分)(1)已知數列滿足:,且(為非零常數,),求數列的前項和;(2)已知數列滿足:(ⅰ)對任意的;(ⅱ)對任意的,,且.①若,求數列是等比數列的充要條件.②求證:數列是等比數列,其中.20.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標原點,求△面積的最大值及此時直線的方程.21.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.22.(10分)在平面直角坐標系中,曲線的參數方程為:(為參數),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線交于,兩點,與曲線交于,兩點,求取得最大值時直線的直角坐標方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(點在第一象限內),由得,即,化簡得,由于點在第一象限內,所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數形結合的數學思想方法,屬于難題.2、D【解析】
由已知等式求出z,再由共軛復數的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數=-1+,虛部為1故選D.【點睛】本題考查復數代數形式的乘除運算和共軛復數的基本概念,屬于基礎題.3、C【解析】
直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.4、A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.5、D【解析】
原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.6、B【解析】
由題意知且,結合數軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關系及運算,以及借助數軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.7、D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.8、A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.9、C【解析】
利用復數的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數的三角形式的乘法運算法則是解題的關鍵,復數問題高考必考,常見考點有:點坐標和復數的對應關系,點的象限和復數的對應關系,復數的加減乘除運算,復數的模長的計算.10、B【解析】
構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.11、C【解析】令圓的半徑為1,則,故選C.12、C【解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由,解得,進而求出,即可得出結果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.14、【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴在上單調遞增,時,,,且,∴在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,,所以,這與是函數的極大值點矛盾.綜上,.方法二:依據極值的定義,要使是函數的極大值點,由知須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得.15、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數的應用,屬于中檔題.16、【解析】
根據個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據題意可求相應的概率,進而可求X的數學期望.【詳解】事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點睛】本題以實際問題為素材,考查離散型隨機變量的概率及期望,解題時要注意獨立事件概率公式的靈活運用,屬于基礎題.18、(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學生總數為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎題19、(1);(2)①;②證明見解析.【解析】
(1)由條件可得,結合等差數列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數列的性質,即可得到所求充要條件;②當,,,由等比數列的定義和不等式的性質,化簡變形,即可得到所求結論.【詳解】解:(1),,且為非零常數,,,可得,可得數列的首項為,公差為的等差數列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數列是等比數列,則,,可得,,即,又,即有,即,數列是等比數列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數列;同理可得以為首項、為公比的等比數列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數列,,,,,,,,,是以為首項,為公比的等比數列,其中.【點睛】本題考查新定義的理解和運用,考查等差數列和等比數列的定義和通項公式的運用,考查分類討論思想方法和推理、運算能力,屬于難題.20、(Ⅰ);(Ⅱ)面積的最大值為,此時直線的方程為.【解析】
(1)根據橢圓的定義求解軌跡方程;(2)設出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設直線的方程為與橢圓交于點,,聯立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當且僅當,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山西機電職業技術學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年山東畜牧獸醫職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年安順職業技術學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年寧波城市職業技術學院高職單招職業技能測試近5年常考版參考題庫含答案解析
- BLS培訓課件教學課件
- 2023年工作總結報告
- 膽源性胰腺炎護理
- 119消防安全講座課件
- 新能源冷暖設備供應及施工承包合同
- 2025年濟南濼口實驗學校八年級下學期物理期中前測考試試卷(含答案)
- 安徽省蕪湖市無為市部分學校2023-2024學年八年級下學期期中數學試題
- 《婦女保健與營養》課件
- Improve6西格瑪改善階段綠帶教材
- 預防便秘的健康宣教內容
- 2024年蜀道集團招聘筆試參考題庫含答案解析
- 初中語文九年級下冊第四單元作業設計單元質量檢測作業
- 2022輔警考試《道路交通安全法》基礎知識題庫(帶答案)
- 液壓仿真技術的現狀及發展趨勢
- nrf2and通路在藥物治療中的作用
- 高考語文復習:詩歌語言鑒賞
- 泌尿外科常見疾病診療指南
評論
0/150
提交評論