




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
寧夏銀川九中2024年高三最后一模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設i為數單位,為z的共軛復數,若,則()A. B. C. D.2.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-3.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-14.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.5.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且6.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.7.中國古代數學著作《算法統宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數,請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.已知向量,,且,則()A. B. C.1 D.29.下圖是我國第24~30屆奧運獎牌數的回眸和中國代表團獎牌總數統計圖,根據表和統計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數一直保持上升趨勢B.折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數、銀牌數、銅牌數都有所下降D.統計圖中前六屆奧運會中國代表團的奧運獎牌總數的中位數是54.510.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.411.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.12.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區域為,則區域的外接圓的面積為______.14.設的內角的對邊分別為,,.若,,,則_____________15.已知數列中,為其前項和,,,則_________,_________.16.若冪函數的圖象經過點,則其單調遞減區間為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.18.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.19.(12分)已知,函數.(1)若,求的單調遞增區間;(2)若,求的值.20.(12分)已知數列的前項和為,且滿足,各項均為正數的等比數列滿足(1)求數列的通項公式;(2)若,求數列的前項和21.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.22.(10分)已知的圖象在處的切線方程為.(1)求常數的值;(2)若方程在區間上有兩個不同的實根,求實數的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由復數的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數的乘除法運算,考查共軛復數的概念,掌握復數的運算法則是解題關鍵.2、C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.3、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數量積求向量的夾角,屬于基礎題.4、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.5、B【解析】由且可得,故選B.6、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.7、C【解析】
設第一天走里,則是以為首項,以為公比的等比數列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數列的某一項的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.8、A【解析】
根據向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.9、B【解析】
根據表格和折線統計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數不是一直保持上升趨勢,29屆最多,錯誤;B.折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數、銅牌數有所下降,銀牌數有所上升,錯誤;D.統計圖中前六屆奧運會中國代表團的奧運獎牌總數按照順序排列的中位數為,不正確;故選:B【點睛】此題考查統計圖,關鍵點讀懂折線圖,屬于簡單題目.10、C【解析】
由正項等比數列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數列基本量的求法,屬基礎題.11、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.12、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先作可行域,根據解三角形得外接圓半徑,最后根據圓面積公式得結果.【詳解】由題意作出區域,如圖中陰影部分所示,易知,故,又,設的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點睛】線性規劃問題,首先明確可行域對應的是封閉區域還是開放區域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結合圖形確定目標函數最值取法、值域范圍.14、或【解析】試題分析:由,則可運用同角三角函數的平方關系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點:運用正弦定理解三角形.(注意多解的情況判斷)15、8(寫為也得分)【解析】
由,得,.當時,,所以,所以的奇數項是以1為首項,以2為公比的等比數列;其偶數項是以2為首項,以2為公比的等比數列.則,.16、【解析】
利用待定系數法求出冪函數的解析式,再求出的單調遞減區間.【詳解】解:冪函數的圖象經過點,則,解得;所以,其中;所以的單調遞減區間為.故答案為:.【點睛】本題考查了冪函數的圖象與性質的應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】
(1)先根據空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18、(1);(2)4【解析】
(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設,,在中,由正弦定理得,,∴,∴,∵,∴∴.【點睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.19、(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可得出函數的單調遞增區間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,,由,得,因此,函數的單調遞增區間為;(2),,,,,,.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數公式將函數進行化簡是解決本題的關鍵,屬中等題.20、(1);(2)【解析】
(1)由化為,利用數列的通項公式和前n項和的關系,得到是首項為,公差為的等差數列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數列從開始成等差數列,,代入得是首項為,公差為的等差數列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數列的通項公式和前n項和的關系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.21、(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】
(Ⅰ)由曲線的參數方程能求出曲線的普通方程,由此能求出曲線的極坐標方程.(Ⅱ)令,,則,利用誘導公式及二倍角公式化簡,再由余弦函數的性質求出面積的取值范圍;【詳解】解:(Ⅰ)由(為參數)化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【點睛】本題考查曲線的極坐標方程的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 穎蒙建筑裝飾材銷售合同深度分析
- 企業法律顧問聘用合同協議書
- 新版主體勞務分包合同樣本
- 生態建設苗木采購合同
- 廈門市2025年數學五年級第二學期期末經典模擬試題含答案
- 肇慶市實驗中學高三上學期第周物理高效課堂教學設計:運動合成與分解練習
- 金融居間代理協議
- 佳木斯職業學院《譜學導論》2023-2024學年第二學期期末試卷
- 山西財經大學《民宿室內設計》2023-2024學年第一學期期末試卷
- 上海市浦東新區2025屆三下數學期末質量檢測試題含解析
- 統編版2024-2025學年語文六年級下冊期中測試卷試題(有答案)
- 企業供應商管理制度
- 新生兒早產兒個案護理
- 2024-2025學年人教版初中物理八年級下冊期中檢測卷(第七章-第九章)
- 維修人員管理獎懲制度3篇1
- 《2025年CSCO腎癌診療指南》解讀
- 手衛生知識宣教培訓
- 智能定時開關插座設計與制作
- 醫院患者滿意度調查工作制度
- 18《井岡翠竹》公開課一等獎創新教學設計
- 《企業績效評價標準值(2023年版)》
評論
0/150
提交評論