安徽省宣城市奮飛學校2023-2024學年數學九上期末復習檢測試題含解析_第1頁
安徽省宣城市奮飛學校2023-2024學年數學九上期末復習檢測試題含解析_第2頁
安徽省宣城市奮飛學校2023-2024學年數學九上期末復習檢測試題含解析_第3頁
安徽省宣城市奮飛學校2023-2024學年數學九上期末復習檢測試題含解析_第4頁
安徽省宣城市奮飛學校2023-2024學年數學九上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省宣城市奮飛學校2023-2024學年數學九上期末復習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖是二次函數圖象的一部分,則關于的不等式的解集是()A. B. C. D.2.如圖,直線y=x+2與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(﹣,0) B.(﹣,0) C.(﹣,0) D.(﹣,0)3.下列函數中,變量是的反比例函數是()A. B. C. D.4.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發,按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m25.如圖,點A、B、C在⊙O上,則下列結論正確的是()A.∠AOB=∠ACBB.∠AOB=2∠ACBC.∠ACB的度數等于的度數D.∠AOB的度數等于的度數6.如圖,在平面直角坐標系中,點M的坐標為M(,2),那么cosα的值是()A. B. C. D.7.小新拋一枚質地均勻的硬幣,連續拋三次,硬幣落地均正面朝上,如果他第四次拋硬幣,那么硬幣正面朝上的概率為()A. B. C.1 D.8.已知一個幾何體如圖所示,則該幾何體的主視圖是()A. B.C. D.9.如圖,在平面直角坐標系中,點,將沿軸向右平移得,此時四邊形是菱形,則點的坐標是()A. B. C. D.10.如圖,是的直徑,是的弦,若,則().A. B. C. D.11.如圖,△ABC的內切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.912.下列一元二次方程中,兩個實數根之和為2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=0二、填空題(每題4分,共24分)13.飛機著陸后滑行的距離y(m)關于滑行時間t(s)的函數關系式是y=60t-t2,在飛機著陸滑行中,最后2s滑行的距離是______m14.已知線段,點是線段的黃金分割點(),那么線段______.(結果保留根號)15.如圖,是的直徑,,弦,的平分線交于點,連接,則陰影部分的面積是________.(結果保留)16.如圖,中,邊上的高長為.作的中位線,交于點;作的中位線,交于點;……順次這樣做下去,得到點,則________.

17.如圖,在中,交于點,交于點.若、、,則的長為_________.18.如圖,已知等邊,頂點在雙曲線上,點的坐標為(2,0).過作,交雙曲線于點,過作交軸于,得到第二個等邊.過作交雙曲線于點,過作交軸于點得到第三個等邊;以此類推,…,則點的坐標為______,的坐標為______.三、解答題(共78分)19.(8分)如圖,一次函數y1=x+4的圖象與反比例函數y2=的圖象交于A(﹣1,a),B兩點,與x軸交于點C.(1)求k.(2)根據圖象直接寫出y1>y2時,x的取值范圍.(3)若反比例函數y2=與一次函數y1=x+4的圖象總有交點,求k的取值.20.(8分)已知AD為⊙O的直徑,BC為⊙O的切線,切點為M,分別過A,D兩點作BC的垂線,垂足分別為B,C,AD的延長線與BC相交于點E.(1)求證:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的長.21.(8分)如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,直線AB與反比例函數y=(m>0)在第一象限的圖象交于點C、點D,其中點C的坐標為(1,8),點D的坐標為(4,n).(1)分別求m、n的值;(2)連接OD,求△ADO的面積.22.(10分)課本上有如下兩個命題:命題1:圓的內接四邊形的對角互補.命題2:如果一個四邊形兩組對角互補,那么該四邊形的四個頂點在同一個圓上.請判斷這兩個命題的真、假?并選擇其中一個說明理由.23.(10分)如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:(1)求證:CD是⊙O的切線;(2)若BC=3,CD=4,求平行四邊形OABC的面積.24.(10分)如圖,在△ABC中,∠ACB=90o,∠ABC=45o,點O是AB的中點,過A、C兩點向經過點O的直線作垂線,垂足分別為E、F.(1)如圖①,求證:EF=AE+CF.(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數量關系?請直接寫出你的猜想.25.(12分)在平面直角坐標系中,直線y=x﹣2與x軸交于點B,與y軸交于點C,二次函數y=x2+bx+c的圖象經過B,C兩點,且與x軸的負半軸交于點A.(1)直接寫出:b的值為;c的值為;點A的坐標為;(2)點M是線段BC上的一動點,動點D在直線BC下方的二次函數圖象上.設點D的橫坐標為m.①如圖1,過點D作DM⊥BC于點M,求線段DM關于m的函數關系式,并求線段DM的最大值;②若△CDM為等腰直角三角形,直接寫出點M的坐標.26.如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點D由點A出發沿AB方向向點B勻速運動,同時點E由點B出發沿BC方向向點C勻速運動,它們的速度均為1cm/s.連接DE,設運動時間為t(s)(0<t<10),解答下列問題:(1)當t為何值時,△BDE的面積為7.5cm2;(2)在點D,E的運動中,是否存在時間t,使得△BDE與△ABC相似?若存在,請求出對應的時間t;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【分析】先根據拋物線平移的規律得到拋物線,通過觀察圖象可知,它的對稱軸以及與軸的交點,利用函數圖像的性質可以直接得到答案.【詳解】解:∵根據拋物線平移的規律可知,將二次函數向左平移個單位可得拋物線,如圖:∴對稱軸為,與軸的交點為,∴由圖像可知關于的不等式的解集為:.故選:D【點睛】本題考查了二次函數與不等式,主要利用了二次函數的平移規律、對稱性,數形結合的思想,解題關鍵在于通過平移規律得到新的二次函數圖象以及與軸的交點坐標.2、A【分析】根據一次函數解析式可以求得,,根據平面直角坐標系里線段中點坐標公式可得,,根據軸對稱的性質和兩點之間線段最短的公理求出點關于軸的對稱點,連接,線段的長度即是的最小值,此時求出解析式,再解其與軸的交點即可.【詳解】解:,,,,同理可得點關于軸的對稱點;連接,設其解析式為,代入與可得:,令,解得..【點睛】本題是結合了一次函數的動點最值問題,熟練掌握一次函數的圖象與性質,把點的坐標與線段長度靈活轉化為兩點間的問題是解答關鍵.3、B【解析】根據反比例函數的一般形式即可判斷.【詳解】A.不符合反比例函數的一般形式的形式,選項錯誤;B.符合反比例函數的一般形式的形式,選項正確;C.不符合反比例函數的一般形式的形式,選項錯誤;D.不符合反比例函數的一般形式的形式,選項錯誤.故選B.【點睛】本題考查了反比例函數的定義,熟練掌握反比例函數的一般形式是解題的關鍵.4、A【分析】由OA4n=2n知OA2017=+1=1009,據此得出A2A2018=1009-1=1008,據此利用三角形的面積公式計算可得.【詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【點睛】本題主要考查點的坐標的變化規律,解題的關鍵是根據圖形得出下標為4的倍數時對應長度即為下標的一半,據此可得.5、B【分析】根據圓周角定理和圓心角、弧、弦的關系逐個判斷即可.【詳解】A.根據圓周角定理得:∠AOB=2∠ACB,故本選項不符合題意;B.根據圓周角定理得:∠AOB=2∠ACB,故本選項符合題意;C.∠ACB的度數等于的度數的一半,故本選項不符合題意;D.∠AOB的度數等于的度數,故本選項不符合題意.故選:B.【點睛】本題考查了圓周角定理和圓心角、弧、弦的關系,能熟記知識點的內容是解答本題的關鍵.6、D【分析】如圖,作MH⊥x軸于H.利用勾股定理求出OM,即可解決問題.【詳解】解:如圖,作MH⊥x軸于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故選:D.【點睛】本題考查解直角三角形的應用,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.7、A【解析】試題分析:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是.故選A.考點:概率公式.8、A【分析】主視圖是從物體正面看,所得到的圖形.【詳解】該幾何體的主視圖是:故選:A【點睛】本題考查了三視圖的知識,主視圖是從物體正面看到的圖,掌握定義是關鍵.9、A【分析】首先由平移的性質,得出點C的縱坐標,OA=DE=3,AD=OE,然后根據勾股定理得出CD,再由菱形的性質得出點C的橫坐標,即可得解.【詳解】由已知,得點C的縱坐標為4,OA=DE=3,AD=OE∴∵四邊形是菱形∴AD=BC=CD=5∴點C的橫坐標為5∴點C的坐標為故答案為A.【點睛】此題主要考查平面直角坐標系中,根據平移和菱形的性質求解點坐標,熟練掌握,即可解題.10、B【分析】根據AB是⊙O的直徑得出∠ADB=90°,再求出∠A的度數,由圓周角定理即可推出∠BCD的度數.【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故選B.【點睛】本題考查圓周角定理及其推論,熟練掌握圓周角定理是解題的關鍵.11、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設⊙O的半徑為r,利用面積法求出r的值即可求得答案.【詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.【點睛】本題考查了三角形的內切圓,勾股定理的逆定理,正方形判定與性質,面積法等,正確把握相關知識是解題的關鍵.12、D【分析】利用根與系數的關系進行判斷即可.【詳解】方程1x1+x﹣1=0的兩個實數根之和為;方程x1+1x﹣1=0的兩個實數根之和為﹣1;方程1x1﹣x﹣1=0的兩個實數根之和為;方程x1﹣1x﹣1=0的兩個實數根之和為1.故選D.【點睛】本題考查了根與系數的關系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1,x1x1.二、填空題(每題4分,共24分)13、6【分析】先求出飛機停下時,也就是滑行距離最遠時,s最大時對應的t值,再求出最后2s滑行的距離.【詳解】由題意,y=60t-t2,=?(t?20)2+600,即當t=20秒時,飛機才停下來.∴當t=18秒時,y=?(18?20)2+600=594m,故最后2s滑行的距離是600-594=6m故填:6.【點睛】本題考查了二次函數的應用.解題時,利用配方法求得t=20時,s取最大值,再根據題意進行求解.14、【分析】根據黃金比值為計算即可.【詳解】解:∵點P是線段AB的黃金分割點(AP>BP)∴故答案為:.【點睛】本題考查的知識點是黃金分割,熟記黃金分割點的比值是解題的關鍵.15、【分析】連接OD,求得AB的長度,可以推知OA和OD的長度,然后由角平分線的性質求得∠AOD=90°;最后由扇形的面積公式、三角形的面積公式可以求得,陰影部分的面積=.【詳解】解:連接,∵為的直徑,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴陰影部分的面積.故答案為:.【點睛】本題綜合考查了圓周角定理、含30度角的直角三角形以及扇形面積公式.16、或【分析】根據中位線的性質,得出的關系式,代入即可.【詳解】根據中位線的性質故我們可得當均成立,故關系式正確∴故答案為:或.【點睛】本題考查了歸納總結的問題,掌握中位線的性質得出的關系式是解題的關鍵.17、6【分析】接運用平行線分線段成比例定理列出比例式,借助已知條件即可解決問題.【詳解】,∵DE∥BC,∴,即,解得:,故答案為:.【點睛】本題主要考查了平行線分線段成比例定理及其應用問題;運用平行線分線段成比例定理正確寫出比例式是解題的關鍵.18、(2,0),(2,0).【分析】根據等邊三角形的性質以及反比例函數圖象上點的坐標特征分別求出B2、B3、B4的坐標,得出規律,進而求出點Bn的坐標.【詳解】解:如圖,作A2C⊥x軸于點C,設B1C=a,則A2C=a,

OC=OB1+B1C=2+a,A2(2+a,a).

∵點A2在雙曲線上,

∴(2+a)?a=,

解得a=-1,或a=--1(舍去),

∴OB2=OB1+2B1C=2+2-2=2,

∴點B2的坐標為(2,0);

作A3D⊥x軸于點D,設B2D=b,則A3D=b,

OD=OB2+B2D=2+b,A2(2+b,b).

∵點A3在雙曲線y=(x>0)上,

∴(2+b)?b=,

解得b=-+,或b=--(舍去),

∴OB3=OB2+2B2D=2-2+2=2,

∴點B3的坐標為(2,0);

同理可得點B4的坐標為(2,0)即(4,0);

以此類推…,

∴點Bn的坐標為(2,0),

故答案為(2,0),(2,0).【點睛】本題考查了反比例函數圖象上點的坐標特征,等邊三角形的性質,正確求出B2、B3、B4的坐標進而得出點Bn的規律是解題的關鍵.三、解答題(共78分)19、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.【分析】(1)把點A坐標代入一次函數關系式可求出a的值,確定點A的坐標,再代入反比例函數關系式可求出k的值,(2)一次函數與反比例函數聯立,可求出交點B的坐標,再根據圖象可得出當y1>y2時,x的取值范圍.(3)若反比例函數y2=與一次函數y1=x+4的圖象總有交點,就是x2+4x﹣k=1有實數根,根據根的判別式求出k的取值范圍.【詳解】(1)一次函數y1=x+4的圖象過A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函數y2=得,k=﹣3;(2)由(1)得反比例函數,由題意得,,解得,,,∴點B(﹣3,1)當y1>y2,即一次函數的圖象位于反比例函數圖象上方時,自變量的取值范圍為:﹣3<x<﹣1;(3)若反比例函數y2=與一次函數y1=x+4的圖象總有交點,即,方程=x+4有實數根,也就是x2+4x﹣k=1有實數根,∴16+4k≥1,解得,k≥﹣4,∵k≠1,∴k的取值范圍為:k≥﹣4且k≠1.【點睛】此題考查待定系數法求函數解析式,函數圖象與二元一次方程組的關系,一次函數與反比例函數交點的確定,正確理解題意是解題的關鍵.20、(1)證明見解析(2)4【分析】(1)由AD為直徑,得到所對的圓周角為直角,利用等角的余角相等得到一對角相等,進而利用兩對角對應相等的三角形相似即可得證;(2)連接OM,由BC為圓的切線,得到OM與BC垂直,利用銳角三角函數定義及勾股定理即可求出所求.【詳解】解:(1)∵AD為圓O的直徑,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)連接OM.∵BC為圓O的切線,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根據勾股定理得:ME===4.【點睛】本題考查了相似三角形的判定與性質,圓周角定理,銳角三角函數定義以及切線的性質,熟練掌握相似三角形的判定與性質是解答本題的關鍵.21、(1)m=8,n=1.(1)10【分析】(1)把代入解析式可求得m的值,再把點D(4,n)代入即可求得答案;(1)用待定系數法求得直線AB的解析式,繼而求得點A的坐標,再利用三角形面積公式即可求得答案.【詳解】(1)∵反比例函數(>0)在第一象限的圖象交于點,∴,∴,∴函數解析式為,將代入得,.(1)設直線AB的解析式為,由題意得,解得:,∴直線AB的函數解析式為,令,則,∴,∴.【點睛】本題考查了用待定法求函數解析式及三角形面積公式,熟練掌握待定法求函數解析式是解題的關鍵.22、命題一、二均為真命題,證明見解析.【分析】利用圓周角定理可證明命題正確;利用反證法可證明命題2正確.【詳解】命題一、二均為真命題,命題1、命題2都是真命題.證明命題1:如圖,四邊形ABCD為⊙O的內接四邊形,連接OA、OC,∵∠B=∠1,∠D=∠2,而∠1+∠2=360°,∴∠B+∠D=×360°=180°,即圓的內接四邊形的對角互補.【點睛】本題考查了命題與定理:命題寫成“如果…,那么…”的形式,這時,“如果”后面接的部分是題設,“那么”后面解的部分是結論.命題的“真”“假”是就命題的內容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.23、(1)證明見解析;(2)平行四邊形OABC的面積S=1【解析】試題分析:(1)連接OD,求出∠EOC=∠DOC,根據SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根據切線的判定推出即可;(2)根據全等三角形的性質求出CE=CD=4,根據平行四邊形性質求出OA=3,根據平行四邊形的面積公式求出即可.試題解析:(1)連接OD,∵OD=OA,∴∠ODA=∠A,∵四邊形OABC是平行四邊形,∴OC∥AB,∴∠EOC=∠A,∠COD=∠ODA,∴∠EOC=∠DOC,又∵OE=OD,OC=OC,∴△EOC≌△DOC(SAS),∴∠ODC=∠OEC=90°,即OD⊥DC,∴CD是⊙O的切線;(2)∵△EOC≌△DOC,∴CE=CD=4,∵四邊形OABC是平行四邊形,∴OA=BC=3,∴平行四邊形OABC的面積S=OA×CE=3×4=1.考點:1、全等三角形的性質和判定;2、切線的判定與性質;3、平行四邊形的性質.24、(1)見解析;(2)圖②:EF=AE+CF圖③:EF=AE-CF,見解析【分析】(1)連接OC,運用AAS證△AOE≌△OCF即可;(2)按(1)中的方法,連接OC,證明△AOE≌△OCF,即可得出結論【詳解】(1)連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如圖②,連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【點睛】本題主要考查全等三角形的判定和性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(即全等三角形的對應邊相等、對應角相等)是解題的關鍵.25、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直線yx﹣1與x軸交于點B,與y軸交于點C,則點B、C的坐標為:(4,0)、(0,﹣1),即可求解;(1)①MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三種情況,分別求解即可.【詳解】(1)直線yx﹣1與x軸交于點B,與y軸交于點C,則點B、C的坐標為:(4,0)、(0,﹣1).將點B、C的坐標代入拋物線表達式并解得:b,c=﹣1.故拋物線的表達式為:…①,點A(﹣1,0).故答案為:,﹣1,(﹣1,0);(1)①如圖1,過點D作y軸的平行線交BC于點H交x軸于點E.設點D(m,m1m﹣1),點H(m,m﹣1).∵∠MDH+∠M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論