




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省南平市重點中學2024屆高三質量檢測試題數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.42.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.3.函數在的圖象大致為A. B.C. D.4.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.5.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-16.各項都是正數的等比數列的公比,且成等差數列,則的值為()A. B.C. D.或7.已知在中,角的對邊分別為,若函數存在極值,則角的取值范圍是()A. B. C. D.8.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.9.集合的子集的個數是()A.2 B.3 C.4 D.810.函數f(x)=2x-3A.[32C.[3211.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.12.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數對于都有,且周期為2,當時,,則________________________.14.小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.15.將函數的圖象向右平移個單位長度后得到函數的圖象,則函數的最大值為______.16.記等差數列和的前項和分別為和,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和為,且滿足.(Ⅰ)求數列的通項公式;(Ⅱ)證明:.18.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.19.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.20.(12分)某企業為了了解該企業工人組裝某產品所用時間,對每個工人組裝一個該產品的用時作了記錄,得到大量統計數據.從這些統計數據中隨機抽取了個數據作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優秀員工.(1)求這個樣本數據的中位數和眾數;(2)以這個樣本數據中優秀員工的頻率作為概率,任意調查名工人,求被調查的名工人中優秀員工的數量分布列和數學期望.21.(12分)為了打好脫貧攻堅戰,某貧困縣農科院針對玉米種植情況進行調研,力爭有效地改良玉米品種,為農民提供技術支援,現對已選出的一組玉米的莖高進行統計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數;(2)根據莖葉圖的數據,完成下面的列聯表:抗倒伏易倒伏矮莖高莖(3)根據(2)中的列聯表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.82822.(10分)已知都是大于零的實數.(1)證明;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
根據三視圖即可求得幾何體表面積,即可解得未知數.【題目詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【題目點撥】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.2、C【解題分析】
令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【題目詳解】令,則,,,,,因此,.故選:C.【題目點撥】本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.3、A【解題分析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.4、C【解題分析】
首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【題目詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【題目點撥】本題主要考查了等差數列的基本量的求解,屬于基礎題.5、D【解題分析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【題目詳解】由于,所以,即,,即,解得或.故選:D【題目點撥】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.6、C【解題分析】分析:解決該題的關鍵是求得等比數列的公比,利用題中所給的條件,建立項之間的關系,從而得到公比所滿足的等量關系式,解方程即可得結果.詳解:根據題意有,即,因為數列各項都是正數,所以,而,故選C.點睛:該題應用題的條件可以求得等比數列的公比,而待求量就是,代入即可得結果.7、C【解題分析】
求出導函數,由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數性質可得結論.【題目詳解】,.若存在極值,則,又.又.故選:C.【題目點撥】本題考查導數與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.8、C【解題分析】
將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【題目詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【題目點撥】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.9、D【解題分析】
先確定集合中元素的個數,再得子集個數.【題目詳解】由題意,有三個元素,其子集有8個.故選:D.【題目點撥】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.10、A【解題分析】
根據冪函數的定義域與分母不為零列不等式組求解即可.【題目詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1【題目點撥】定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx11、A【解題分析】
由已知可得,根據二倍角公式即可求解.【題目詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【題目點撥】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.12、C【解題分析】
將直線方程代入拋物線方程,根據根與系數的關系和拋物線的定義即可得出的值.【題目詳解】F(1,0),故直線AB的方程為y=x﹣1,聯立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【題目點撥】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用,且周期為2,可得,得.【題目詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【題目點撥】本題考查函數的周期性與對稱性的應用,考查轉化能力,屬于基礎題.14、【解題分析】
從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【題目詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【題目點撥】此題考查根據古典概型求概率,關鍵在于根據題意準確求出基本事件的總數和某一事件包含的基本事件個數.15、【解題分析】
由三角函數圖象相位變換后表達函數解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數值域求得最大值.【題目詳解】將函數的圖象向右平移個單位長度后得到函數的圖象,則所以,當函數最大,最大值為故答案為:【題目點撥】本題考查表示三角函數圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數式并求最值,屬于簡單題.16、【解題分析】
結合等差數列的前項和公式,可得,求解即可.【題目詳解】由題意,,,因為,所以.故答案為:.【題目點撥】本題考查了等差數列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),.(Ⅱ)見解析【解題分析】
(1)由,分和兩種情況,即可求得數列的通項公式;(2)由題,得,利用等比數列求和公式,即可得到本題答案.【題目詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數列是以1為首項,2為公比的等比數列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【題目點撥】本題主要考查根據的關系式求通項公式以及利用等比數列的前n項和公式求和并證明不等式,考查學生的運算求解能力和推理證明能力.18、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解題分析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【題目詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【題目點撥】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.19、(1)證明見解析,;(2)11202.【解題分析】
(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【題目詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.【題目點撥】本題考查等比數列的定義,考查分組求和,屬于中檔題.20、(1)43,47;(2)分布列見解析,.【解題分析】
(1)根據莖葉圖即可得到中位數和眾數;(2)根據數據可得任取一名優秀員工的概率為,故,寫出分布列即可得解.【題目詳解】(1)中位數為,眾數為.(2)被調查的名工人中優秀員工的數量,任取一名優秀員工的概率為,故,,,的分布列如下:故【題目點撥】此題考查根據莖葉圖求眾數和中位數,求離散型隨機變量分布列,根據分布列求解期望,關鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.21、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【解題分析】
(1)排序后第10和第11兩個數的平均數為中位數;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025光伏發電系統采購合同
- 2025混凝土工程施工合同范本
- 2025節能服務合同模板
- 2025高空建筑外墻清潔保養合同
- 2025授權印刷合同范本
- 2025冰箱銷售正規合同范本
- 2025存量房屋租賃合同范本
- 2025維修倉庫租賃合同范本
- 2025合同意向書合同意向書的法律效力
- 2025辦公室裝修水電施工合同范本 辦公室水電施工合同格式
- GB/T 4008-2024錳硅合金
- 中國肺血栓栓塞診治與預防指南解讀專家講座
- 2024急性腦梗死溶栓規范診治指南(附缺血性腦卒中急診急救專家共識總結歸納表格)
- 《鴻門宴》公開課一等獎創新教學設計 統編版高中語文必修下冊
- DZ∕T 0202-2020 礦產地質勘查規范 鋁土礦(正式版)
- 二年級三位數加減法豎式計算
- 安全生產投入臺賬(模板)
- 清華大學領軍計劃語文試題強基計劃
- 醫療欠款欠條范本
- 母親節健康科普知識
- 《奧爾夫音樂教學法》課程標準
評論
0/150
提交評論