2024屆陜西省漢臺中學數學高三上期末監測試題含解析_第1頁
2024屆陜西省漢臺中學數學高三上期末監測試題含解析_第2頁
2024屆陜西省漢臺中學數學高三上期末監測試題含解析_第3頁
2024屆陜西省漢臺中學數學高三上期末監測試題含解析_第4頁
2024屆陜西省漢臺中學數學高三上期末監測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆陜西省漢臺中學數學高三上期末監測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.2.已知正項數列滿足:,設,當最小時,的值為()A. B. C. D.3.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.4.已知函數,若不等式對任意的恒成立,則實數k的取值范圍是()A. B. C. D.5.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20206.若向量,,則與共線的向量可以是()A. B. C. D.7.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-38.函數在的圖象大致為A. B.C. D.9.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數除以正整數所得的余數是”記為“”,例如.執行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.1910.若為虛數單位,則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.12.已知函數,若時,恒成立,則實數的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落.小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.14.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.15.某校開展“我身邊的榜樣”評選活動,現對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(不考慮是否有效)分別為總票數的88%,75%,46%,則本次投票的有效率(有效票數與總票數的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數不超過2時才為有效票.甲乙丙16.函數的極大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態度和對傳統的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)為了拓展城市的旅游業,實現不同市區間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為,現規劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發現與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該??既嗣5娜藬?;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.參考公式:,參考數據:,,,20.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.21.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區,如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數表示,并求在區間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.22.(10分)已知函數.(1)若函數,試討論的單調性;(2)若,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.2、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.3、A【解析】

首先找出與面所成角,根據所成角所在三角形利用余弦定理求出所成角的余弦值,再根據同角三角函數關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.4、A【解析】

先求出函數在處的切線方程,在同一直角坐標系內畫出函數和的圖象,利用數形結合進行求解即可.【詳解】當時,,所以函數在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內畫出函數和的圖象如下圖的所示:利用數形結合思想可知:不等式對任意的恒成立,則實數k的取值范圍是.故選:A【點睛】本題考查了利用數形結合思想解決不等式恒成立問題,考查了導數的應用,屬于中檔題.5、C【解析】

首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.6、B【解析】

先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.7、D【解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.8、A【解析】

因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.9、B【解析】

由已知中的程序框圖可知,該程序的功能是利用循環結構計算并輸出變量的值,模擬程序的運行過程,代入四個選項進行驗證即可.【詳解】解:由程序框圖可知,輸出的數應為被3除余2,被5除余2的且大于10的最小整數.若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當循環的次數不多,或有規律時,常采用循環模擬或代入選項驗證的方法進行解答.10、B【解析】

由共軛復數的定義得到,通過三角函數值的正負,以及復數的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數的概念及復數的幾何意義,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.11、C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.12、D【解析】

通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球將落入袋,所以有,則.故本題應填.14、【解析】

如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.15、91【解析】

設共有選票張,且票對應張數為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數與總票數的比值)最高可能為.故答案為:.【點睛】本題考查線性規劃的實際應用問題,關鍵是能夠根據已知條件構造出變量所滿足的關系式.16、【解析】

對函數求導,根據函數單調性,即可容易求得函數的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數有極大值.故答案為:.【點睛】本題考查利用導數研究函數的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)①2②期望值為X900600300100P【解析】

(1)一件手工藝品質量為B級的概率為.(2)①由題意可得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質量為A級的概率為,一件手工藝品質量為B級的概率為,一件手工藝品質量為C級的概率為,一件手工藝品質量為D級的概率為,所以X的分布列為X900600300100P則期望為.18、(1)沒有(2)分布列見解析,(3)證明見解析【解析】

(1)根據公式計算卡方值,再對應卡值表判斷..(2)根據題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據期望公式求值.(3)因為至少8個的偶數個十字路口,所以,即.要證,即證,根據組合數公式,即證;易知有.成立.設個路口中有個路口種植楊樹,下面分類討論①當時,由論證.②當時,由論證.③當時,,設,再論證當時,取得最小值即可.【詳解】(1)本次實驗中,,故沒有99.9%的把握認為喜歡樹木的種類與居民所在的城市具有相關性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因為,所以.設個路口中有個路口種植楊樹,①當時,,因為,所以,于是.②當時,,同上可得③當時,,設,當時,,顯然,當即時,,當即時,,即;,因此,即.綜上,,即.【點睛】本題考查獨立性檢驗、離散型隨機變量的分布列以及期望、排列組合,還考查運算求解能力以及必然與或然思想,屬于難題.19、(1);(2)117人;(3)分布列見解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據回歸直線方程計算公式,計算可得人數;(3)和被選中的人數分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數學期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該??既朊5娜藬导s為117人(3)由題知和被選中的人數分別為2和3,進行演講的兩人是2018年畢業的人數的所有可能取值為0,1,2,,的分布列為012【點睛】本小題主要考查平均數有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數據處理能力,屬于中檔題.20、(1)證明見解析;(2).【解析】

(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論