




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶江南新區聯盟重點達標名校2024年中考數學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列因式分解正確的是A. B.C. D.2.若反比例函數的圖像經過點,則一次函數與在同一平面直角坐標系中的大致圖像是()A. B. C. D.3.如圖,四邊形ABCD內接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數為()A.100° B.105° C.110° D.115°4.已知二次函數(m為常數)的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=35.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.6.觀察下面“品”字形中各數之間的規律,根據觀察到的規律得出a的值為()A.23 B.75 C.77 D.1397.在數軸上到原點距離等于3的數是()A.3 B.﹣3 C.3或﹣3 D.不知道8.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(9.如圖,在6×4的正方形網格中,△ABC的頂點均為格點,則sin∠ACB=()A. B.2 C. D.10.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°11.尺規作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.如圖是按上述要求排亂順序的尺規作圖:則正確的配對是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ12.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數是()A.4個 B.3個 C.2個 D.1個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在2018年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為_____.14.如圖,數軸上點A所表示的實數是________________.15.將拋物線y=(x+m)2向右平移2個單位后,對稱軸是y軸,那么m的值是_____.16.計算(﹣a)3?a2的結果等于_____.17.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關系是a_______b(填“>”或“<”或“=”).18.如圖,把△ABC繞點C按順時針方向旋轉35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一天晚上,李明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)20.(6分)如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點P從點A出發,沿折線AB﹣BC向終點C運動,在AB上以每秒8個單位長度的速度運動,在BC上以每秒2個單位長度的速度運動,點Q從點C出發,沿CA方向以每秒個單位長度的速度運動,兩點同時出發,當點P停止時,點Q也隨之停止.設點P運動的時間為t秒.(1)求線段AQ的長;(用含t的代數式表示)(2)當點P在AB邊上運動時,求PQ與△ABC的一邊垂直時t的值;(3)設△APQ的面積為S,求S與t的函數關系式;(4)當△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.21.(6分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.22.(8分)如圖,一次函數y=kx+b的圖象與反比例函數y=
(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數與反比例函數的解析式;
(2)求△ABC的面積.23.(8分)如圖,一次函數y=ax+b的圖象與反比例函數的圖象交于A,B兩點,與X軸交于點C,與Y軸交于點D,已知,A(n,1),點B的坐標為(﹣2,m)(1)求反比例函數的解析式和一次函數的解析式;(2)連結BO,求△AOB的面積;(3)觀察圖象直接寫出一次函數的值大于反比例函數的值時x的取值范圍是.24.(10分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.25.(10分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.26.(12分)某數學興趣小組為測量如圖(①所示的一段古城墻的高度,設計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發經過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.27.(12分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,FG∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【題目詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【題目點撥】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.2、D【解題分析】
甶待定系數法可求出函數的解析式為:,由上步所得可知比例系數為負,聯系反比例函數,一次函數的性質即可確定函數圖象.【題目詳解】解:由于函數的圖像經過點,則有∴圖象過第二、四象限,
∵k=-1,
∴一次函數y=x-1,
∴圖象經過第一、三、四象限,
故選:D.【題目點撥】本題考查反比例函數的圖象與性質,一次函數的圖象,解題的關鍵是求出函數的解析式,根據解析式進行判斷;3、B【解題分析】
根據圓內接四邊形的性質得出∠C的度數,進而利用平行線的性質得出∠ABC的度數,利用角平分線的定義和三角形內角和解答即可.【題目詳解】∵四邊形ABCD內接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故選:B.【題目點撥】本題考查了圓內接四邊形的性質,關鍵是根據圓內接四邊形的性質得出∠C的度數.4、B【解題分析】試題分析:∵二次函數(m為常數)的圖象與x軸的一個交點為(1,0),∴.∴.故選B.5、A【解題分析】
根據左視圖的概念得出各選項幾何體的左視圖即可判斷.【題目詳解】解:A選項幾何體的左視圖為;
B選項幾何體的左視圖為;
C選項幾何體的左視圖為;
D選項幾何體的左視圖為;
故選:A.【題目點撥】本題考查由三視圖判斷幾何體,解題的關鍵是熟練掌握左視圖的概念.6、B【解題分析】
由圖可知:上邊的數與左邊的數的和正好等于右邊的數,上邊的數為連續的奇數,左邊的數為21,22,23,…26,由此可得a,b.【題目詳解】∵上邊的數為連續的奇數1,3,5,7,9,11,左邊的數為21,22,23,…,∴b=26=1.∵上邊的數與左邊的數的和正好等于右邊的數,∴a=11+1=2.故選B.【題目點撥】本題考查了數字變化規律,觀察出上邊的數與左邊的數的和正好等于右邊的數是解題的關鍵.7、C【解題分析】
根據數軸上到原點距離等于3的數為絕對值是3的數即可求解.【題目詳解】絕對值為3的數有3,-3.故答案為C.【題目點撥】本題考查數軸上距離的意義,解題的關鍵是知道數軸上的點到原點的距離為絕對值.8、C【解題分析】利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規律是解題關鍵.9、C【解題分析】
如圖,由圖可知BD=2、CD=1、BC=,根據sin∠BCA=可得答案.【題目詳解】解:如圖所示,∵BD=2、CD=1,∴BC===,則sin∠BCA===,故選C.【題目點撥】本題主要考查解直角三角形,解題的關鍵是熟練掌握正弦函數的定義和勾股定理.10、D【解題分析】分析:先根據圓內接四邊形的性質得到然后根據圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.11、D【解題分析】【分析】分別利用過直線外一點作這條直線的垂線作法以及線段垂直平分線的作法和過直線上一點作這條直線的垂線、角平分線的作法分別得出符合題意的答案.【題目詳解】Ⅰ、過直線外一點作這條直線的垂線,觀察可知圖②符合;Ⅱ、作線段的垂直平分線,觀察可知圖③符合;Ⅲ、過直線上一點作這條直線的垂線,觀察可知圖④符合;Ⅳ、作角的平分線,觀察可知圖①符合,所以正確的配對是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故選D.【題目點撥】本題主要考查了基本作圖,正確掌握基本作圖方法是解題關鍵.12、B【解題分析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉化為函數圖象交點問題,利用拋物線頂點證明.【題目詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【題目點撥】本題是二次函數綜合題,考查了二次函數的各項系數與圖象位置的關系、拋物線對稱性和最值,以及用函數的觀點解決方程或不等式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3.05×105【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】305000=3.05×故答案為:3.05×10【題目點撥】本題考查的知識點是科學記數法—表示較大的數,解題關鍵是熟記科學計數法的表示方法.14、【解題分析】
A點到-1的距離等于直角三角形斜邊的長度,應用勾股定理求解出直角三角形斜邊長度即可.【題目詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數為:﹣1+【題目點撥】本題考查了利用勾股定理求解數軸上點所表示的數.15、1【解題分析】
根據平移規律“左加右減,上加下減”填空.【題目詳解】解:將拋物線y=(x+m)1向右平移1個單位后,得到拋物線解析式為y=(x+m-1)1.其對稱軸為:x=1-m=0,解得m=1.故答案是:1.【題目點撥】主要考查的是函數圖象的平移,用平移規律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式.16、﹣a5【解題分析】
根據冪的乘方和積的乘方運算法則計算即可.【題目詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【題目點撥】本題考查了冪的乘方和積的乘方運算.17、<【解題分析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.18、55.【解題分析】
試題分析:∵把△ABC繞點C按順時針方向旋轉35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉的性質;2.直角三角形兩銳角的關系.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、路燈的高CD的長約為6.1m.【解題分析】設路燈的高CD為xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴,解得x=6.125≈6.1.∴路燈的高CD約為6.1m.20、(1)4﹣t;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)S與t的函數關系式為:S=;(4)t的值為或.【解題分析】分析:(1)根據勾股定理求出AC的長,然后由AQ=AC-CQ求解即可;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:當Q在C處,P在A處時,PQ⊥BC;當PQ⊥AB時;當PQ⊥AC時;分別求解即可;(3)當P在AB邊上時,即0≤t≤1,作PG⊥AC于G,或當P在邊BC上時,即1<t≤3,分別根據三角形的面積求函數的解析式即可;(4)當△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當P在邊AB上時,作PG⊥AC于G,則AG=GQ,列方程求解;②當P在邊AC上時,AQ=PQ,根據勾股定理求解.詳解:(1)如圖1,Rt△ABC中,∠A=30°,AB=8,∴BC=AB=4,∴AC=,由題意得:CQ=t,∴AQ=4﹣t;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:①當Q在C處,P在A處時,PQ⊥BC,此時t=0;②當PQ⊥AB時,如圖2,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴,t=;③當PQ⊥AC時,如圖3,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴t=;綜上所述,當點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)分兩種情況:①當P在AB邊上時,即0≤t≤1,如圖4,作PG⊥AC于G,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴S△APQ=AQ?PG=(4﹣t)?4t=﹣2t2+8t;②當P在邊BC上時,即1<t≤3,如圖5,由題意得:PB=2(t﹣1),∴PC=4﹣2(t﹣1)=﹣2t+6,∴S△APQ=AQ?PC=(4﹣t)(﹣2t+6)=t2;綜上所述,S與t的函數關系式為:S=;(4)當△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當P在邊AB上時,如圖6,AP=PQ,作PG⊥AC于G,則AG=GQ,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴AG=4t,由AQ=2AG得:4﹣t=8t,t=,②當P在邊AC上時,如圖7,AQ=PQ,Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,∴,t=或﹣(舍),綜上所述,t的值為或.點睛:此題主要考查了三角形中的動點問題,用到勾股定理,等腰三角形的性質,直角三角形的性質,二次函數等知識,是一道比較困難的綜合題,關鍵是合理添加輔助線,構造合適的方程求解.21、(1);(2)①有最大值1;②(2,3)或(,)【解題分析】
(1)根據自變量與函數值的對應關系,可得A,C點坐標,根據代定系數法,可得函數解析式;(2)①根據相似三角形的判定與性質,可得,根據平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數,根據二次函數的性質,可得答案;②根據勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結論.【題目詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4,0),將A,C點坐標代入函數解析式,得,解得,拋物線的解析是為;
(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標是(2,3)或(,).【題目點撥】本題考查了二次函數綜合題,解(1)的關鍵是待定系數法;解(2)的關鍵是利用相似三角形的判定與性質得出,又利用了二次函數的性質;解(3)的關鍵是利用解直角三角形,要分類討論,以防遺漏.22、(1)y=2x﹣5,;(2).【解題分析】
試題分析:(1)把A坐標代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標代入求出n的值,確定出B坐標,將A與B坐標代入一次函數解析式求出k與b的值,即可確定出一次函數解析式;(2)用矩形面積減去周圍三個小三角形的面積,即可求出三角形ABC面積.試題解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式為,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A與B坐標代入y=kx+b中得:,解得:k=2,b=﹣5,則一次函數解析式為y=2x﹣5;(2)如圖,S△ABC=考點:反比例函數與一次函數的交點問題;一次函數及其應用;反比例函數及其應用.23、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;【解題分析】
(1)過A作AM⊥x軸于M,根據勾股定理求出OM,得出A的坐標,把A得知坐標代入反比例函數的解析式求出解析式,吧B的坐標代入求出B的坐標,吧A、B的坐標代入一次函數的解析式,即可求出解析式.
(2)求出直線AB交y軸的交點坐標,即可求出OD,根據三角形面積公式求出即可.
(1)根據A、B的橫坐標結合圖象即可得出答案.【題目詳解】解:(1)過A作AM⊥x軸于M,則AM=1,OA=,由勾股定理得:OM=1,即A的坐標是(1,1),把A的坐標代入y=得:k=1,即反比例函數的解析式是y=.把B(﹣2,n)代入反比例函數的解析式得:n=﹣,即B的坐標是(﹣2,﹣),把A、B的坐標代入y=ax+b得:,解得:k=.b=﹣,即一次函數的解析式是y=x﹣.(2)連接OB,∵y=x﹣,∴當x=0時,y=﹣,即OD=,∴△AOB的面積是S△BOD+S△AOD=××2+××1=.(1)一次函數的值大于反比例函數的值時x的取值范圍是﹣2<x<0或x>1,故答案為﹣2<x<0或x>1.【題目點撥】本題考查了一次函數與反比例函數的交點問題以及用待定系數法求函數的解析式,函數的圖象的應用.熟練掌握相關知識是解題關鍵.24、(1)1;(2)證明見解析;(1)點坐標為.【解題分析】
由點B的坐標,利用反比例函數圖象上點的坐標特征可求出k值;設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結合可得出∽,由相似三角形的性質可得出,再利用“同位角相等,兩直線平行”可證出;由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結論.【題目詳解】解:點在反比例函數的圖象,.故答案為:1.證明:反比例函數解析式為,設A點坐標為軸于點C,軸于點D,點坐標為,P點坐標為,C點坐標為,,,,,,,.又,∽,,.解:四邊形ABCD的面積和的面積相等,,,整理得:,解得:,舍去,點坐標為.【題目點撥】本題考查了反比例函數圖象上點的坐標特征、相似三角形的判定與性質、平行線的判定以及三角形的面積,解題關鍵是:根據點的坐標,利用反比例函數圖象上點的坐標特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面積公式,找出關于a的方程.25、(1);(2)與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解題分析】
利用二次函數圖象上點的坐標特征可得出點A、B的坐標,結合即可得出關于a的一元一次方程,解之即可得出結論;由點A、B的坐標可得出直線AB的解析式待定系數法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結合即可得出S關于x的函數關系式,再利用二次函數的性質即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結論;當時,由點B的縱坐標可得出點E的縱坐標為4,結合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結論綜上即可得出結論.【題目詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當時,S取最大值,最大值為18,此時點E的坐標為,與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設點D的坐標為,則點E的坐標為,,當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版四年級下冊數學 福州市數學期末質量監測卷教案
- 三年級數學上冊 1 時、分、秒第2課時 時間的簡單計算教學設計 新人教版
- 店鋪培訓講課課件
- 人教部編版七年級上冊第七課 戰國時期的社會變化教案
- 茶葉種植技術培訓
- 九年級化學上冊 第七單元 燃料及其利用 實驗活動3 燃燒的條件教學設計(新版)新人教版
- 六年級語文下冊 第四單元 11 十六年前的回憶配套教學設計 新人教版
- 人教版九年級化學上冊同步教學設計:第三單元課題2 原子的結構(3課時)(3份打包)
- 五年級上冊科學教學設計-第七節 制作一個潛望鏡 教科版
- 初中湘教版1.4.1有理數的加法教案
- 成礦預測課件
- GB∕T 2518-2019 連續熱鍍鋅和鋅合金鍍層鋼板及鋼帶
- 線切割每日點檢表A0
- 年產美甲貼100萬張新建項目環境影響報告表
- 信息時代的研究生 學習與創新能力培養
- 起重機防搖擺控制PPT課件
- 第十一章 地役權
- 西門子Siemens 840D參數詳解
- DLT 596-2021 電力設備預防性試驗規程
- 風機基礎土方開挖專項施工方案
- 詩歌朗誦《詩意中國》
評論
0/150
提交評論