吉林省長春綠園區五校聯考2024屆中考二模數學試題含解析_第1頁
吉林省長春綠園區五校聯考2024屆中考二模數學試題含解析_第2頁
吉林省長春綠園區五校聯考2024屆中考二模數學試題含解析_第3頁
吉林省長春綠園區五校聯考2024屆中考二模數學試題含解析_第4頁
吉林省長春綠園區五校聯考2024屆中考二模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春綠園區五校聯考2024學年中考二模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.22.下列圖形中為正方體的平面展開圖的是()A. B.C. D.3.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數為()A.20° B.30° C.45° D.50°4.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°5.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米6.根據下表中的二次函數的自變量與函數的對應值,可判斷該二次函數的圖象與軸().

…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點7.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤8.若a與﹣3互為倒數,則a=()A.3 B.﹣3 C.13 D.-9.“可燃冰”的開發成功,拉開了我國開發新能源的大門,目前發現我國南海“可燃冰”儲存量達到800億噸,將800億用科學記數法可表示為()A.0.8×1011 B.8×1010 C.80×109 D.800×10810.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°11.對于一組統計數據:1,6,2,3,3,下列說法錯誤的是()A.平均數是3 B.中位數是3 C.眾數是3 D.方差是2.512.在一次體育測試中,10名女生完成仰臥起坐的個數如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:_______________________.14.為有效開展“陽光體育”活動,某校計劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.15.一只螞蟻從數軸上一點A出發,爬了7個單位長度到了+1,則點A所表示的數是_____16.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.17.分解因式:x2﹣1=____.18.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.20.(6分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?21.(6分)小新家、小華家和書店依次在東風大街同一側(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數圖象如圖所示,根據圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數圖象(2)求小新路過小華家后,y1與x之間的函數關系式.(3)直接寫出兩人離小華家的距離相等時x的值.22.(8分)有這樣一個問題:探究函數y=﹣2x的圖象與性質.小東根據學習函數的經驗,對函數y=﹣2x的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:(1)函數y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;(4)觀察圖象,寫出該函數的兩條性質________.23.(8分)如圖,在△ABC中,點D在邊BC上,聯結AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.24.(10分)計算:2sin30°﹣(π﹣)0+|﹣1|+()﹣125.(10分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個不完整統計圖.請根據圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數為;(2)補全條形統計圖(3)扇形統計圖中,類所在扇形的圓心角的度數為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.26.(12分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設OP=AC,求∠CPO的正弦值;(3)設AC=9,AB=15,求d+f的取值范圍.27.(12分)現在,某商場進行促銷活動,出售一種優惠購物卡(注:此卡只作為購物優惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節省多少元錢?小張按合算的方案,把這臺冰箱買下,如果某商場還能盈利25%,這臺冰箱的進價是多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【題目詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【題目點撥】本題考查了等邊三角形的性質和扇形的面積計算,能根據圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.2、C【解題分析】

利用正方體及其表面展開圖的特點依次判斷解題.【題目詳解】由四棱柱四個側面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【題目點撥】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關鍵.3、D【解題分析】

根據兩直線平行,內錯角相等計算即可.【題目詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【題目點撥】本題主要考查平行線的性質,清楚兩直線平行,內錯角相等是解答本題的關鍵.4、C【解題分析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【題目詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【題目點撥】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.5、C【解題分析】當60cm的木條與20cm是對應邊時,那么另兩條邊的木條長度分別為90cm與120cm;當60cm的木條與30cm是對應邊時,那么另兩條邊的木條長度分別為40cm與80cm;當60cm的木條與40cm是對應邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項不符合題意,C選項符合題意,故選C.6、B【解題分析】

根據表中數據可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據拋物線的對稱性即可作出判斷.【題目詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【題目點撥】本題考查二次函數的性質,屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.7、D【解題分析】

根據實數的運算法則即可一一判斷求解.【題目詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.8、D【解題分析】試題分析:根據乘積是1的兩個數互為倒數,可得3a=1,∴a=13故選C.考點:倒數.9、B【解題分析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】解:將800億用科學記數法表示為:8×1.

故選:B.【題目點撥】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、C【解題分析】

由切線的性質可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據直角三角形兩銳角互余可知∠B=36°.【題目詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質.11、D【解題分析】

根據平均數、中位數、眾數和方差的定義逐一求解可得.【題目詳解】解:A、平均數為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數為3,正確;C、眾數為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【題目點撥】本題考查了眾數、平均數、中位數、方差.平均數平均數表示一組數據的平均程度.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(或最中間兩個數的平均數);方差是用來衡量一組數據波動大小的量.12、C【解題分析】

用仰臥起坐個數不少于10個的頻數除以女生總人數10計算即可得解.【題目詳解】仰臥起坐個數不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.【題目點撥】本題考查了頻數與頻率,頻率=.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

先提公因式,再用平方差公式分解.【題目詳解】解:【題目點撥】本題考查因式分解,掌握因式分解方法是關鍵.14、1【解題分析】

設購買籃球x個,則購買足球個,根據總價單價購買數量結合購買資金不超過3000元,即可得出關于x的一元一次不等式,解之取其中的最大整數即可.【題目詳解】設購買籃球x個,則購買足球個,根據題意得:,解得:.為整數,最大值為1.故答案為1.【題目點撥】本題考查了一元一次不等式的應用,根據各數量間的關系,正確列出一元一次不等式是解題的關鍵.15、﹣6或8【解題分析】試題解析:當往右移動時,此時點A表示的點為﹣6,當往左移動時,此時點A表示的點為8.16、【解題分析】分析:根據題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.17、(x+1)(x﹣1).【解題分析】試題解析:x2﹣1=(x+1)(x﹣1).考點:因式分解﹣運用公式法.18、1+【解題分析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構建出與已知和所求相關的直角三角形是解答此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)BD=CD=5;(2)BD=5,BC=5.【解題分析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據垂徑定理求出BE即可解決問題.【題目詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【題目點撥】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,屬于中考常考題型.20、(1)t=秒;(1)t=5﹣(s).【解題分析】

(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據三角形的面積公式列出方程求解即可.【題目詳解】解:(1)∵點A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵點P的速度是每秒1個單位,點Q的速度是每秒1個單位,∴AQ=t,AP=10﹣t,①∠APQ是直角時,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角時,△AQP∽△AOB,∴,即,解得t=,綜上所述,t=秒時,△APQ與△AOB相似;(1)如圖,過點P作PC⊥OA于點C,則PC=AP?sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面積=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故當t=5﹣(s)時,△APQ的面積為8cm1.【題目點撥】本題主要考查了相似三角形的判定與性質、銳角三角函數、三角形的面積以及一元二次方程的應用能力,分類討論是解題的關鍵.21、(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);(3)兩人離小華家的距離相等時,x的值為2.4或12.【解題分析】

(1)先根據小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據小華的速度即可畫出y2與x的函數圖象;(2)設所求函數關系式為y1=kx+b,由圖可知函數圖像過點(4,0),(20,960),則將兩點坐標代入求解即可得到函數關系式;(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.【題目詳解】(1)由圖可知,小新離小華家240米,用4分鐘到達,則速度為240÷4=60米/分,小新按此速度再走16分鐘到達書店,則a=16×60=960米,小華到書店的時間為960÷40=24分鐘,則y2與x的函數圖象為:故小新的速度為60米/分,a=960;(2)當4≤x≤20時,設所求函數關系式為y1=kx+b(k≠0),將點(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20時)(3)由圖可知,小新到小華家之前的函數關系式為:y=240﹣6x,①當兩人分別在小華家兩側時,若兩人到小華家距離相同,則240﹣6x=40x,解得:x=2.4;②當小新經過小華家并追上小華時,兩人到小華家距離相同,則60x﹣240=40x,解得:x=12;故兩人離小華家的距離相等時,x的值為2.4或12.22、(1)任意實數;(2);(3)見解析;(4)①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【解題分析】

(1)沒有限定要求,所以x為任意實數,(2)把x=3代入函數解析式即可,(3)描點,連線即可解題,(4)看圖確定極點坐標,即可找到增減區間.【題目詳解】解:(1)函數y=﹣2x的自變量x的取值范圍是任意實數;故答案為任意實數;(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據圖象得,①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.故答案為①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【題目點撥】本題考查了函數的圖像和性質,屬于簡單題,熟悉函數的圖像和概念是解題關鍵.23、見解析【解題分析】試題分析:(1),,可得∽,從而得,再根據∠BDF=∠CDA即可證;(2)由∽,可得,從而可得,再由∽,可得從而得,繼而可得,得到.試題解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【題目點撥】本題考查了相似三角形的性質與判定,能結合圖形以及已知條件靈活選擇恰當的方法進行證明是關鍵.24、1+【解題分析】分析:直接利用特殊角的三角函數值以及零指數冪的性質和負指數冪的性質分別化簡得出答案.詳解:原式=2×-1+-1+2=1+.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.25、(1)300;(2)見解析;(3)108°;(4)約有840名.【解題分析】

(1)根據A種類人數及其占總人數百分比可得答案;

(2)用總人數乘以B的百分比得出其人數,即可補全條形圖;

(3)用360°乘以C類人數占總人數的比例可得;

(4)總人數乘以C、D兩類人數占樣本的比例可得答案.【題目詳解】解:(1)本次被調查的學生的人數為69÷23%=300(人),

故答案為:300;

(2)喜歡B類校本課程的人數為300×20%=60(人),

補全條形圖如下:

(3)扇形統計圖中,C類所在扇形的圓心角的度數為360°×=108°,

故答案為:108°;

(4)∵2000×=840,

∴估計該校喜愛C,D兩類校本課程的學生共有840名.【題目點撥】本題考查條形統計圖、扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解題關鍵.條形統計圖能清楚地表示出每個項目的數據.26、(1)詳見解析;(2);(3)【解題分析】

(1)連接OC,根據等腰三角形的性質得到∠A=∠OCA,由平行線的性質得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質得到∠OBP=90°,根據全等三角形的性質即可得到結論;

(2)過O作OD⊥AC于D,根據相似三角形的性質得到CD?OP=OC2,根據已知條件得到,由三角函數的定義即可得到結論;

(3)連接BC,根據勾股定理得到BC==12,當M與A重合時,得到d+f=12,當M與B重合時,得到d+f=9,于是得到結論.【題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論