2024屆吉林省德惠市第三中學中考一模數學試題含解析_第1頁
2024屆吉林省德惠市第三中學中考一模數學試題含解析_第2頁
2024屆吉林省德惠市第三中學中考一模數學試題含解析_第3頁
2024屆吉林省德惠市第三中學中考一模數學試題含解析_第4頁
2024屆吉林省德惠市第三中學中考一模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省德惠市第三中學中考一模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.二次函數的圖象如圖所示,則一次函數與反比例函數在同一坐標系內的圖象大致為()A. B. C. D.2.下列圖形中,陰影部分面積最大的是A. B. C. D.3.義安區某中學九年級人數相等的甲、乙兩班學生參加同一次數學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定4.如圖,在?ABCD中,用直尺和圓規作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.125.關于x的一元二次方程x2+3x+m=0有兩個不相等的實數根,則A.m≤94B.m<946.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1027.如圖,矩形ABCD的邊AB=1,BE平分∠ABC,交AD于點E,若點E是AD的中點,以點B為圓心,BE長為半徑畫弧,交BC于點F,則圖中陰影部分的面積是()A.2- B. C.2- D.8.如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其俯視圖是A. B. C. D.9.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.10.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數為()A.115° B.120° C.125° D.130°二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的不等式組的整數解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤412.計算:()0﹣=_____.13.如圖所示是一組有規律的圖案,第l個圖案由4個基礎圖形組成,第2個圖案由7個基礎圖形組成,……,第n(n是正整數)個圖案中的基礎圖形個數為_______(用含n的式子表示).14.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.15.實數,﹣3,,,0中的無理數是_____.16.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.三、解答題(共8題,共72分)17.(8分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數中選擇一個合適的數代入求值.18.(8分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發放,早餐一人一份,一份兩樣,一樣一個.(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.19.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設P點的橫坐標是t,△PAB的面積是S,求S關于t的函數關系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.20.(8分)如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.(1)求證:四邊形ABEF是平行四邊形;(2)當∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.21.(8分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣122.(10分)在眉山市櫻花節期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F,B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數據:≈1.41,≈1.73)23.(12分)“千年古都,大美西安”.某校數學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B”的學生人數.24.如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據二次函數圖象開口向上得到a>0,再根據對稱軸確定出b,根據二次函數圖形與軸的交點個數,判斷的符號,根據圖象發現當x=1時y=a+b+c<0,然后確定出一次函數圖象與反比例函數圖象的情況,即可得解.【題目詳解】∵二次函數圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數圖形與軸有兩個交點,則>0,∵當x=1時y=a+b+c<0,∴的圖象經過第二四象限,且與y軸的正半軸相交,反比例函數圖象在第二、四象限,只有D選項圖象符合.故選:D.【題目點撥】考查反比例函數的圖象,一次函數的圖象,二次函數的圖象,掌握函數圖象與系數的關系是解題的關鍵.2、C【解題分析】

分別根據反比例函數系數k的幾何意義以及三角形面積求法以及梯形面積求法得出即可:【題目詳解】A、根據反比例函數系數k的幾何意義,陰影部分面積和為:xy=1.B、根據反比例函數系數k的幾何意義,陰影部分面積和為:.C、如圖,過點M作MA⊥x軸于點A,過點N作NB⊥x軸于點B,根據反比例函數系數k的幾何意義,S△OAM=S△OAM=,從而陰影部分面積和為梯形MABN的面積:.D、根據M,N點的坐標以及三角形面積求法得出,陰影部分面積為:.綜上所述,陰影部分面積最大的是C.故選C.3、B【解題分析】

根據方差的意義,方差反映了一組數據的波動大小,故可由兩人的方差得到結論.【題目詳解】∵S甲2>S乙2,∴成績較為穩定的是乙班。故選:B.【題目點撥】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.4、B【解題分析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質,3、勾股定理,4、平行線的性質5、B【解題分析】試題分析:根據題意得△=32﹣4m>0,解得m<94故選B.考點:根的判別式.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數)的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.6、B【解題分析】試題分析:“960萬”用科學記數法表示為9.6×106,故選B.考點:科學記數法—表示較大的數.7、B【解題分析】

利用矩形的性質以及結合角平分線的性質分別求出AE,BE的長以及∠EBF的度數,進而利用圖中陰影部分的面積=S-S-S,求出答案.【題目詳解】∵矩形ABCD的邊AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵點E是AD的中點,∴AE=ED=1,∴圖中陰影部分的面積=S?S?S=1×2?×1×1?故選B.【題目點撥】此題考查矩形的性質,扇形面積的計算,解題關鍵在于掌握運算公式8、D【解題分析】

由圓錐的俯視圖可快速得出答案.【題目詳解】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現在俯視圖中,從幾何體的上面看:可以得到兩個正方形,右邊的正方形里面有一個內接圓.故選D.【題目點撥】本題考查立體圖形的三視圖,熟記基本立體圖的三視圖是解題的關鍵.9、C【解題分析】

從正面看到的圖形如圖所示:,故選C.10、C【解題分析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結合折疊的性質可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關矩形折疊的問題,熟悉“矩形的四個內角都是直角”和“折疊的性質”是正確解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、C【解題分析】分析:先根據一元一次不等式組解出x的取值,再根據不等式組的整數解有4個,求出實數a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數解,∴整數解為:故選C.點睛:考查解一元一次不等式組的整數解,分別解不等式,寫出不等式的解題,根據不等式整數解的個數,確定a的取值范圍.12、-1【解題分析】

本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【題目詳解】由分析可得:()0﹣=1-2=﹣1.【題目點撥】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關鍵.13、3n+1【解題分析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎圖形有4+3(n-1)=3n+1個考點:規律型14、107°【解題分析】

過C作d∥a,得到a∥b∥d,構造內錯角,根據兩直線平行,內錯角相等,及平角的定義,即可得到∠1的度數.【題目詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【題目點撥】本題考查了平行線的性質以及正方形性質的運用,解題時注意:兩直線平行,內錯角相等.解決問題的關鍵是作輔助線構造內錯角.15、【解題分析】

無理數包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數,根據以上內容判斷即可.【題目詳解】解:=4,是有理數,﹣3、、0都是有理數,是無理數.故答案為:.【題目點撥】本題考查了對無理數的定義的理解和運用,注意:無理數是指無限不循環小數,包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數.16、1【解題分析】

設HG=x,根據相似三角形的性質用x表示出KD,根據矩形面積公式列出二次函數解析式,根據二次函數的性質計算即可.【題目詳解】解:設HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【題目點撥】本題考查的是相似三角形的判定和性質、二次函數的性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.三、解答題(共8題,共72分)17、,1.【解題分析】

先算括號內的減法,同時把除法變成乘法,再根據分式的乘法進行計算,最后代入求出即可.【題目詳解】原式=?=?=.∵由題意,x不能取1,﹣1,﹣2,∴x取2.當x=2時,原式===1.【題目點撥】本題考查了分式的混合運算和求值,能正確根據分式的運算法則進行化簡是解答此題的關鍵.18、(1)不可能;(2).【解題分析】

(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結果數,再找出其中某顧客該天早餐剛好得到菜包和油條的結果數,然后根據概率公式計算.【題目詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結果數,其中某顧客該天早餐剛好得到菜包和油條的結果數為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.19、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解題分析】

(1)根據題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據B的橫坐標可求B點坐標,把A,B坐標代入直線解析式,可求k,b(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,設出P點坐標,可求出N點坐標,即可以用t表示S.(3)由PB∥CD,可求P點坐標,連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,根據P的坐標,可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據拋物線的對稱性可知R在對稱軸上.設Q點坐標,根據△BOR∽△PQS,可求Q點坐標.【題目詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當x=﹣2時,y=4即D(﹣2,4),當x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設Q點的橫坐標是m,當x=m時y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當x=﹣時,y=,Q(﹣,).【題目點撥】本題考查二次函數綜合題、一次函數的應用、相似三角形的判定和性質、全等三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識,學會添加常用輔助線,構造特殊四邊形解決問題.20、(1)證明見解析(2)當∠ABC=60°時,四邊形ABEF為矩形【解題分析】

(1)根據旋轉得出CA=CE,CB=CF,根據平行四邊形的判定得出即可;(2)根據等邊三角形的判定得出△ABC是等邊三角形,求出AE=BF,根據矩形的判定得出即可.【題目詳解】(1)∵將△ABC繞點C順時針旋轉180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四邊形ABEF是平行四邊形;(2)當∠ABC=60°時,四邊形ABEF為矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等邊三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四邊形ABEF是平行四邊形,∴四邊形ABEF是矩形.【題目點撥】本題考查了旋轉的性質和矩形的判定、平行四邊形的判定、等邊三角形的性質和判定等知識點,能綜合運用知識點進行推理是解答此題的關鍵.21、1【解題分析】

本題涉及絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方5個考點,先針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果即可.【題目詳解】解:原式=2﹣+2×﹣3+1=1.【題目點撥】本題考查實數的綜合運算能力,是各地中考題中常見的計算題型,解決此類題目的關鍵是熟練掌握絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方等考點的運算.22、7.3米【解題分析】

:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,推出AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【題目詳解】解:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,∴AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E與點F之間的距離為7.3米【題目點撥】本題考查的知識點是解直角三角形的應用-仰角俯角問題,解題的關鍵是熟練的掌握解直角三角形的應用-仰角俯角問題.23、(1)40;(2)想去D景點的人數是8,圓心角度數是72°;(3)280.【解題分析】

(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統計圖,然后用360°乘以最想去D景點的人數所占的百分比即可得到扇形統計圖中表示“醉美旅游景點D”的扇形圓心角的度數;(3)用800乘以樣本中最想去B景點的人數所占的百分比即可.【題目詳解】(1)被調查的學生總人數為8÷20%=40(人);(2)最想去D景點的人數為40-8-14-4-6=8(人),補全條形統計圖為:扇形統計圖中表示“醉美旅游景點D”的扇形圓心角的度數為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論