2024屆吉林省長春市寬城區市級名校中考數學考試模擬沖刺卷含解析_第1頁
2024屆吉林省長春市寬城區市級名校中考數學考試模擬沖刺卷含解析_第2頁
2024屆吉林省長春市寬城區市級名校中考數學考試模擬沖刺卷含解析_第3頁
2024屆吉林省長春市寬城區市級名校中考數學考試模擬沖刺卷含解析_第4頁
2024屆吉林省長春市寬城區市級名校中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省長春市寬城區市級名校中考數學考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,3個形狀大小完全相同的菱形組成網格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數為()A.75° B.60° C.45° D.30°2.1﹣的相反數是()A.1﹣ B.﹣1 C. D.﹣13.在△ABC中,∠C=90°,,那么∠B的度數為()A.60° B.45° C.30° D.30°或60°4.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°5.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④6.某市初中學業水平實驗操作考試,要求每名學生從物理,化學、生物三個學科中隨機抽取一科參加測試,小華和小強都抽到物理學科的概率是()A. B. C. D.7.若一組數據2,3,,5,7的眾數為7,則這組數據的中位數為()A.2 B.3 C.5 D.78.某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.310.下列運算正確的是()A.a3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a411.若分式的值為0,則x的值為()A.-2 B.0 C.2 D.±212.如圖,點從矩形的頂點出發,沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數關系圖象,則矩形的面積為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.14.關于x的方程x2-3x+2=0的兩根為x1,x2,則x1+x2+x1x2的值為______.15.2017年12月31日晚,鄭東新區如意湖文化廣場舉行了“文化跨年夜、出彩鄭州人”的跨年慶?;顒?,大學生小明和小剛都各自前往觀看了演出,而且他們兩人前往時選擇了以下三種交通工具中的一種:共享單車、公交、地鐵,則他們兩人選擇同一種交通工具前往觀看演出的概率為_____.16.如圖,點A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.17.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內,使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應的度數是____.18.二十四節氣列入聯合國教科文組織人類非物質文化遺產代表作名錄.太陽運行的軌道是一個圓形,古人將之稱作“黃道”,并把黃道分為24份,每15度就是一個節氣,統稱“二十四節氣”.這一時間認知體系被譽為“中國的第五大發明”.如圖,指針落在驚蟄、春分、清明區域的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.20.(6分)解不等式組:21.(6分)有一項工程,若甲隊單獨做,恰好在規定日期完成,若乙隊單獨做要超過規定日期3天完成;現在先由甲、乙兩隊合做2天后,剩下的工程再由乙隊單獨做,也剛好在規定日期完成,問規定日期多少天?22.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.23.(8分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.24.(10分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.25.(10分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數;②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數量關系,并證明.26.(12分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.27.(12分)如圖有A、B兩個大小均勻的轉盤,其中A轉盤被分成3等份,B轉盤被分成4等份,并在每一份內標上數字.小明和小紅同時各轉動其中一個轉盤,轉盤停止后(當指針指在邊界線時視為無效,重轉),若將A轉盤指針指向的數字記作一次函數表達式中的k,將B轉盤指針指向的數字記作一次函數表達式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數y=kx+b的圖象經過一、二、四象限的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

將圓補充完整,利用圓周角定理找出點E的位置,再根據菱形的性質即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【題目詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【題目點撥】本題考查了菱形的性質、等邊三角形的判定依據圓周角定理,根據圓周角定理結合圖形找出點E的位置是解題的關鍵.2、B【解題分析】

根據相反數的的定義解答即可.【題目詳解】根據a的相反數為-a即可得,1﹣的相反數是﹣1.故選B.【題目點撥】本題考查了相反數的定義,熟知相反數的定義是解決問題的關鍵.3、C【解題分析】

根據特殊角的三角函數值可知∠A=60°,再根據直角三角形中兩銳角互余求出∠B的值即可.【題目詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數值和直角三角形中兩銳角互余的性質,熟記特殊角的三角函數值是解答本題的突破點.4、A【解題分析】

由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【題目詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【題目點撥】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.5、B【解題分析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質,等高模型、三邊關系一一判斷即可.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【題目點撥】本題考查了相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質,解直角三角形,解題的關鍵是掌握它們的性質進行解題.6、A【解題分析】

作出樹狀圖即可解題.【題目詳解】解:如下圖所示一共有9中可能,符合題意的有1種,故小華和小強都抽到物理學科的概率是,故選A.【題目點撥】本題考查了用樹狀圖求概率,屬于簡單題,會畫樹狀圖是解題關鍵.7、C【解題分析】試題解析:∵這組數據的眾數為7,∴x=7,則這組數據按照從小到大的順序排列為:2,3,1,7,7,中位數為:1.故選C.考點:眾數;中位數.8、C【解題分析】

試題分析:此題等量關系為:2×螺釘總數=螺母總數.據此設未知數列出方程即可【題目詳解】.故選C.解:設安排x名工人生產螺釘,則(26-x)人生產螺母,由題意得

1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.9、B【解題分析】∵摸到紅球的概率為,∴,解得n=8,故選B.10、D【解題分析】

各項計算得到結果,即可作出判斷.【題目詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.11、C【解題分析】由題意可知:,解得:x=2,故選C.12、C【解題分析】

由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,根據矩形的面積公式可求出.【題目詳解】由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【題目點撥】本題考查動點運動問題、矩形面積等知識,根據圖形理解△ABP面積變化情況是解題的關鍵,屬于中考??碱}型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

在AB上取BN=BE,連接EN,根據已知及正方形的性質利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【題目詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【題目點撥】本題考查了正方形的性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考常考題型.14、5【解題分析】試題分析:利用根與系數的關系進行求解即可.解:∵x1,x2是方程x2-3x+2=0的兩根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案為:5.15、【解題分析】

首先根據題意畫樹狀圖,然后根據樹狀圖即可求得所有等可能的結果,最后用概率公式求解即可求得答案.【題目詳解】樹狀圖如圖所示,

∴一共有9種等可能的結果;

根據樹狀圖知,兩人選擇同一種交通工具前往觀看演出的有3種情況,

∴選擇同一種交通工具前往觀看演出的概率:,

故答案為.【題目點撥】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數與總情況數之比.16、72°.【解題分析】

解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【題目點撥】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關鍵.17、60.【解題分析】

首先設半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數,則可求得答案.【題目詳解】設半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應的量角器上的刻度數是60°,故答案為:60.【題目點撥】本題考查了切線的性質、全等三角形的判定與性質以及垂直平分線的性質,解題的關鍵是掌握輔助線的作法,注意掌握數形結合思想的應用.18、【解題分析】

首先由圖可得此轉盤被平分成了24等份,其中驚蟄、春分、清明區域有3份,然后利用概率公式求解即可求得答案.【題目詳解】∵如圖,此轉盤被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【題目點撥】此題考查了概率公式的應用.注意概率=所求情況數與總情況數之比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析【解題分析】試題分析:通過全等三角形△ADE≌△CBF的對應角相等證得∠AED=∠CFB,則由平行線的判定證得結論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.20、﹣9<x<1.【解題分析】

先求每一個不等式的解集,然后找出它們的公共部分,即可得出答案.【題目詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【題目點撥】此題考查了解一元一次不等式組,用到的知識點是解一元一次不等式組的步驟,關鍵是找出兩個不等式解集的公共部分.21、規定日期是6天.【解題分析】

本題的等量關系為:甲工作2天完成的工作量+乙規定日期完成的工作量=1,把相應數值代入即可求解.【題目詳解】解:設工作總量為1,規定日期為x天,則若單獨做,甲隊需x天,乙隊需x+3天,根據題意列方程得

解方程可得x=6,

經檢驗x=6是分式方程的解.

答:規定日期是6天.22、(1)∠AED=∠C,理由見解析;(2)【解題分析】

(1)根據切線的性質和圓周角定理解答即可;(2)根據勾股定理和三角函數進行解答即可.【題目詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【題目點撥】此題考查了切線的性質、直角三角形的性質以及圓周角定理.此題難度適中,注意掌握數形結合思想的應用,注意掌握輔助線的作法.23、1-【解題分析】

利用零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質進行計算即可.【題目詳解】解:原式=.【題目點撥】本題考查了零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質,熟練掌握性質及定義是解題的關鍵.24、(1)證明見解析;(2)1【解題分析】

(1)根據正方形的性質得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據垂線和三角形內角和定理得到∠2+∠3=90°,推出∠1=∠3,根據ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【題目詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【題目點撥】本題主要考查了正方形的性質、三角形的內角和定理、垂線、全等三角形的性質和判定以及銳角三角函數等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.25、(1)①45°,②;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明見解析.【解題分析】

(1)①先根據角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質得∠B=75°,最后利用三角形內角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據平行線的性質和等腰三角形的性質可得AG=AH,再由線段的和可得結論.【題目詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【題目點撥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論