




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省肇慶市名校2024屆中考數學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±202.下列實數0,,,π,其中,無理數共有()A.1個 B.2個 C.3個 D.4個3.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.4.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結論的個數為()A.1個 B.2個 C.3個 D.4個5.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發現把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離y與時間t之間的函數關系的大致圖象是()A. B. C. D.6.把不等式組的解集表示在數軸上,下列選項正確的是()A. B.C. D.7.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.8.下列運算正確的是()A. B.C. D.9.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.10.直線y=3x+1不經過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內角的度數是______.12.二次函數y=(a-1)x2-x+a2-1
的圖象經過原點,則a的值為______.13.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數為_____.14.已知一組數據:3,3,4,5,5,則它的方差為____________15.已知數據x1,x2,…,xn的平均數是,則一組新數據x1+8,x2+8,…,xn+8的平均數是____.16.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.三、解答題(共8題,共72分)17.(8分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統計圖.(1)這次調查的市民人數為________人,m=________,n=________;(2)補全條形統計圖;(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.18.(8分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大小.19.(8分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.20.(8分)如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:≌;(2)當時,求四邊形AECF的面積.21.(8分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷222.(10分)如圖,在平面直角坐標系xOy中,函數()的圖象經過點,AB⊥x軸于點B,點C與點A關于原點O對稱,CD⊥x軸于點D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經過點C,且與x軸,y軸的交點分別為點E,F,當時,求點F的坐標.23.(12分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數根.求m的取值范圍;若m為正整數,求此方程的根.24.網上購物已經成為人們常用的一種購物方式,售后評價特別引人關注,消費者在網店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設這三種評價是等可能的.(1)小明對一家網店銷售某種商品顯示的評價信息進行了統計,并列出了兩幅不完整的統計圖.利用圖中所提供的信息解決以下問題:①小明一共統計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
根據完全平方式的特點求解:a2±2ab+b2.【題目詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【題目點撥】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.2、B【解題分析】
根據無理數的概念可判斷出無理數的個數.【題目詳解】解:無理數有:,.故選B.【題目點撥】本題主要考查了無理數的定義,注意帶根號的要開不盡方才是無理數,無限不循環小數為無理數.3、C【解題分析】
根據圓的弦的性質,連接DC,計算CD的長,再根據直角三角形的三角函數計算即可.【題目詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【題目點撥】本題主要三角函數的計算,結合考查圓性質的計算,關鍵在于利用等量替代原則.4、A【解題分析】
如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【題目點撥】本題考查二次函數系數符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.5、B【解題分析】分析:根據題意出教室,離門口近,返回教室離門口遠,在教室內距離不變,速快跑距離變化快,可得答案.詳解:根據題意得,函數圖象是距離先變短,再變長,在教室內沒變化,最后迅速變短,B符合題意;
故選B.點睛:本題考查了函數圖象,根據距離的變化描述函數是解題關鍵.6、C【解題分析】
求得不等式組的解集為x<﹣1,所以C是正確的.【題目詳解】解:不等式組的解集為x<﹣1.故選C.【題目點撥】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.7、B【解題分析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.8、D【解題分析】【分析】根據同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的法則逐項進行計算即可得.【題目詳解】A.,故A選項錯誤,不符合題意;B.,故B選項錯誤,不符合題意;C.,故C選項錯誤,不符合題意;D.,正確,符合題意,故選D.【題目點撥】本題考查了整式的運算,熟練掌握同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的運算法則是解題的關鍵.9、B【解題分析】
連接BF,由折疊可知AE垂直平分BF,根據勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【題目詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【題目點撥】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.10、D【解題分析】
利用兩點法可畫出函數圖象,則可求得答案.【題目詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數圖象如圖所示,∴函數圖象不過第四象限,故選:D.【題目點撥】本題主要考查一次函數的性質,正確畫出函數圖象是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、144°【解題分析】
根據多邊形內角和公式計算即可.【題目詳解】解:由題知,這是一個10邊形,根據多邊形內角和公式:每個內角等于.故答案為:144°.【題目點撥】此題重點考察學生對多邊形內角和公式的應用,掌握計算公式是解題的關鍵.12、-1【解題分析】
將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【題目詳解】解:∵二次函數y=(a-1)x2-x+a2-1的圖象經過原點,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【題目點撥】本題考查了二次函數圖象上點的坐標特征,圖象過原點,可得出x=2時,y=2.13、72°【解題分析】
首先根據正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【題目詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【題目點撥】本題考查的是正多邊形和圓,利用數形結合求解是解答此題的關鍵14、【解題分析】根據題意先求出這組數據的平均數是:(3+3+4+5+5)÷5=4,再根據方差公式求出這組數據的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.15、【解題分析】
根據數據x1,x2,…,xn的平均數為=(x1+x2+…+xn),即可求出數據x1+1,x2+1,…,xn+1的平均數.【題目詳解】數據x1+1,x2+1,…,xn+1的平均數=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【題目點撥】本題考查了平均數的概念,平均數是指在一組數據中所有數據之和再除以數據的個數.平均數是表示一組數據集中趨勢的量數,它是反映數據集中趨勢的一項指標.16、【解題分析】試題分析:因為OC=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點:1.解直角三角形、2.垂徑定理.三、解答題(共8題,共72分)17、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解題分析】
(1)根據項目B的人數以及百分比,即可得到這次調查的市民人數,據此可得項目A,C的百分比;(2)根據對“社會主義核心價值觀”達到“A.非常了解”的人數為:32%×500=160,補全條形統計圖;(3)根據全市總人數乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數.【題目詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數為:32%×500=160,補全條形統計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.18、(1)證明見試題解析;(2)90°.【解題分析】試題分析:(1)由兩邊對應成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據相似三角形的對應角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點:相似三角形的判定與性質.19、(1)AE與⊙O相切.理由見解析.(2)2.1【解題分析】
(1)連接OM,則OM=OB,利用平行的判定和性質得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質和解直角三角形的有關知識得到AB=12,易證△AOM∽△ABE,根據相似三角形的性質即可求解.【題目詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.20、(1)見解析;(2)【解題分析】
(1)根據平行四邊形的性質得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據全等三角形的判定推出即可;
(2)求出△ABE是等邊三角形,求出高AH的長,再求出面積即可.【題目詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點E、F分別是BC、AD的中點,∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點E、F分別是BC、AD的中點,,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【題目點撥】本題考查了等邊三角形的性質和判定,全等三角形的判定,平行四邊形的性質和判定等知識點,能綜合運用定理進行推理是解此題的關鍵.21、【解題分析】
按照實數的運算順序進行運算即可.【題目詳解】解:原式【題目點撥】本題考查實數的運算,主要考查零次冪,負整數指數冪,特殊角的三角函數值以及立方根,熟練掌握各個知識點是解題的關鍵.22、(1)m=8,n=-2;(2)點F的坐標為,【解題分析】分析:(1)利用三角形的面積公式構建方程求出n,再利用待定系數法求出m的的值即可;(2)分兩種情形分別求解如①圖,當k<0時,設直線y=kx+b與x軸,y軸的交點分別為,.②圖中,當k>0時,設直線y=kx+b與x軸,y軸的交點分別為點,.詳解:(1)如圖②∵點A的坐標為,點C與點A關于原點O對稱,∴點C的坐標為.∵AB⊥x軸于點B,CD⊥x軸于點D,∴B,D兩點的坐標分別為,.∵△ABD的面積為8,,∴.解得.∵函數()的圖象經過點,∴.(2)由(1)得點C的坐標為.①如圖,當時,設直線與x軸,y軸的交點分別為點,.由CD⊥x軸于點D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點的坐標為.②如圖,當時,設直線與x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 靜脈輸液工具的合理選擇 2
- 廣東詩莞市高二數學下學期5月期中試題
- 部編版一年級語文下冊生字筆順期末復習
- 【2】66144+AIGC應用基礎+課程標準
- 岳陽現代服務職業學院《生物醫學導論》2023-2024學年第二學期期末試卷
- 四川省德陽中學2025年高三調研測試(二)物理試題文試題含解析
- 遼寧省大連市達標名校2025屆中考猜題卷(一)語文試題含解析
- 江西婺源茶業職業學院《數字音頻處理技術》2023-2024學年第二學期期末試卷
- 延邊大學《生物醫學工程應用實驗》2023-2024學年第二學期期末試卷
- 四川省成都龍泉第二中學2025屆高三下學期零月考英語試題試卷含解析
- 第四講下好區域協調發展這盤棋-2024年形勢與政策(課件)
- 降低靜脈輸液外滲發生率
- 2024至2030年中國手打釘槍數據監測研究報告
- 配網線路倒閘操作培訓
- 2024年全國數控車工高級技師技能考試題庫(含答案)
- 女性學:女性精神在現代社會中的挑戰學習通超星期末考試答案章節答案2024年
- 《PBR次世代游戲建模技術》(微課版)課件 邱雅慧 3 高模制作、4 UV展開
- 中醫經絡完整課件
- 基本養老金核定表(樣式)
- 2024工業機器人考試題庫(含答案)
- 2024年第九屆全國大學生人力資源管理綜合能力競賽選拔賽考試題庫(含答案)
評論
0/150
提交評論