




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
DailyTemperatureandSales
ofEnergy-usingDurables
JacopoBonan,CristinaCattaneo,Giovannad’Adda,andMassimoTavoni
WorkingPaper23-43
November2023
ResourcesfortheFuture
1
AbouttheAuthors
JacopoBonananaffiliatedscientistattheEuropeanInstituteonEconomicsandtheEnvironment(EIEE)andanassistantprofessorattheSchoolofManagementof
PolitecnicodiMilano.HeobtainedtheMScinEconomicsattheUniversityof
Edinburgh(UK)andthePhDinEconomicsattheUniversityofMilan-Bicocca.HehasbeenaresearchfellowattheCatholicUniversityofMilanandajuniorresearcheratFondazioneEniEnricoMattei(FEEM).Hisresearchfocusesondevelopment
economicswithanemphasisonenergyaccessandefficiency,health,agriculture,andformalandinformalfinancialinstitutions.Heisspecializedinthedesignofimpact
evaluationsandcoordinatedseveralrandomizedcontrolledtrialsinSub-Saharan
AfricaandSouthAsia.
CristinaCattaneoisascientistatEIEE,wheresheisheadoftheresearchareaon
HumanMigration.SheholdsaDPhilinEconomicsfromtheUniversityofSussex-
Brighton(UK),aPhDinEconomicsfromtheUniversitàdegliStudiinMilan(Italy),andaMAinDevelopmentEconomicsfromtheUniversityofSussex.Shehasbeeninvolvedinseveralinternationallyfundedresearchprojects,andshecoordinatedaH2020
projectonPsychological,social,andfinancialbarrierstoenergyefficiency(PENNY).From2007to2018,CristinawasaseniorresearcheratFondazioneEniEnricoMattei(FEEM).CristinaisanadjunctprofessorattheGraduateSchoolinPublicEconomics-DEFAPandpreviouslytaughtinvariousuniversitiesinItalyandabroad,bothat
undergraduateandatgraduatelevel.Hermainresearchinterestsinvolveapplied
econometrics,theeconomicsofmigration,andenergyeconomics.Shehaspublished,amongothers,forInternationalMigrationReview,JournalofDevelopmentEconomics,JournalofInternationalEconomics,JournalofHumanResources,Resourceand
EnergyEconomics,andReviewofEnvironmentalEconomicsandPolicy.
Giovannad’AddaisanassistantprofessorattheUniversityofMilanandascientistatEIEE,wheresheisheadoftheresearchareaonBehavioralScience.Previously,she
workedatMilanPolytechnicandtheUniversityofBirminghamandwasavisiting
researcheratFEEM.SheholdsaPhDinEconomicsfromBocconiUniversity,witha
thesisonnaturalresourceconservationindevelopingcountries,andanMScin
DevelopmentManagementfromLSE.DuringherPhD,GiovannawasaresearchfellowatHarvardKennedySchool,ParisSchoolofEconomicsandUniversityofZurich.
Giovanna’sresearchuseslaboratoryandfieldexperimentstoinvestigatekeydriversofpro-socialbehavior,suchasinstitutions,norms,andleadershipstructures.Her
recentworkhasfocusedontheanalysisoftheimpactofbehavioralenergyefficiencyprograms.
DailyTemperatureandSalesofEnergy-usingDurables
2
MassimoTavoniisthedirectorofEIEE.HeisalsoafullprofessorattheSchoolof
ManagementofPolitecnicodiMilano.HecoordinatedtheClimateChangeMitigationprogramatFondazioneEniEnricoMattei(FEEM)between2015and2018.HehasbeenafellowattheCenterforAdvancedStudiesinBehavioralSciencesatStanford
Universityandapost-doctoralfellowatPrincetonUniversity.Hisresearchisabout
climatechangemitigationpoliciesandhasappearedinmajorscientificjournals.HeisaleadauthoroftheIPCC(5thand6thassessmentreports),co-directsofthe
InternationalEnergyWorkshopandwasdeputyeditorforthejournal‘Climatic
Change’.HeisarecipientofagrantfromtheEuropeanResearchCouncil(ERC).Hehasadvisedseveralinternationalinstitutionsonclimatechangematters,includingtheOECD,theAsianDevelopmentBank,theWorldBank.
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin
Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis
committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesof
informationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.Theviewsexpressedherearethoseoftheindividualauthorsandmaydifferfrom
thoseofotherRFFexperts,itsofficers,oritsdirectors.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyand
redistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynot
applyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethe
materialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/.
1
Dailytemperatureandsalesofenergy-usingdurables
JacopoBonan1,2,CristinaCattaneo2,Giovannad’Adda3,2,andMassimoTavoni1,2
1PolitecnicodiMilano
2RFF-CMCCEuropeanInstituteonEconomicsandtheEnvironment,Fondazione
CentroEuromediterraneosuiCambiamentiClimatici
3UniversityofMilan
Abstract
Decisionswithsignificantandlong-lastingconsequencescanbeinfluencedbyconditionsatthemomentofchoice,suchasweather.Usingadministrativedatafromanonlineretailer,weexam-inewhethertemperatureandotherweathervariablesaffectthesearchandpurchaseofenergy-usingdurables,namely,airconditioners(ACs)anddryers.WeobservemoresalesofACsonhotdaysandfewersalesofdryersonhot,windydays.Wefindnoimpactforapplianceswhoseusefulnessisnotaffectedbytheweather.ForAC,weather-inducedsearchesandpurchasesareinlower-efficiencyen-ergyclasses.Productsearchdataallowustolookintotheprocessleadinguptopurchase.ProspectiveACbuyerssearchlessintensivelywhenthetemperatureishigher,andtheoppositeholdsforbuyersofdryerswhentemperatureandwindspeedincrease.Modelsofmemoryandattentioncanexplainthesebehavioralpatterns.Understandingthesedynamicsisimportantfordesigningenergy-efficiencypolicies,giventheenergyneedsofcoolingtechnologiesandtheirincreaseddemandandusefulnessinarapidlywarmingworld.
Keywords:Projectionbias;salience;energyappliances
JELclassificationcodes:D91,D12,L81
2
1Introduction
Decisionsthathavefutureconsequencesareubiquitous.Althoughtraditionaleconomicsassumesthatindividualscancorrectlyestimatefuturecostsandbenefits,evidenceshowsthatdecisionswithlargeandlong-lastingconsequencesareheavilyinfluencedbytastes,emotions,andcircumstancesatthemomentof
choice(Busseetal.,
2015;
Simonsohn,
2010).Recentsaliencemodels(Bordaloetal.
(2022),henceforth
BGS)offeraunifyingframeworkforawiderangeofdeviationsfromstandardeconomictheory,suchas
projectionbias(Loewensteinetal.,
2003),referencedependence(Ko?szegiandRabin,
2006;
Kahneman
andTversky,
1979)andframingeffects(Bordaloetal.,
2013)
.Specifically,BGSmodelattentionasinfluenced,bottom-up,bycontrasting,surprising,orprominentstimuli.
Weanalyzeadecisionwithlong-lastingconsequences,thepurchaseofanenergy-usingdurable,andshowhowitisaffectedbydailyweather.Weconsidertwotypesofapplianceswithsignificantimpactsonhouseholdenergyconsumption:airconditioners(ACs)anddryers.UsingdatafromanItalianonlineretailer,weinvestigatetheimpactofweatheronthedecisiontobuyandthesearchprocessleadinguptoit.Wefocusontwomainweatherdimensionsthatmayaffecttheseappliances’perceivedusefulness:averagedailytemperatureandwindspeed.
WefindthathigherdailytemperatureincreasespurchasesofACsanddecreasesthoseofdryers;higherwindspeedreducesdryerpurchasesbuthasnoimpactonACs.Otherdimensionsofweathermeaningfullycorrelatewithpurchaselikelihood:anindexofdiscomfort,capturingperceivedtemperatureandincreasingwithhumidity,affectspurchasesofACsbutnotdryers.Consistentwiththeseresults,highertemperatureleadstoafastersearchprocessforACsandasloweronefordryers.TemperaturealsoimpactstheenergyefficiencyofACspurchasedandviewed,shiftingusers’attentiontowardlower-efficiencyproducts.Wefindnoeffectoftemperatureorwindspeedontheenergyefficiencyofdryersviewedorboughtoronsalesofothertypesofappliances,suchaswashingmachinesordishwashers.Ourresultsarerobusttousingvarioussamples;tocontrollingfortemporalandspatialpatternsofvariationinsales;toconsideringnon-lineareffectsoftemperature.Finally,asurvivalanalysisofthesearchprocessalsoproducesconsistentresults.
Ourfindingsareconsistentwithamodelofsalience,adaptedfromBGS,thatwepropose.Weatheraffectstheperceivedusefulnessoftheapplianceand,throughit,thelikelihoodofpurchase.Astheappliance’sattributesrelatedtoitsusefulnessbecomemoresalient,otherattributes,suchasitsenergyefficiency,loseprominence.Thesemechanismshaveimplicationsforthesearchprocess,whichbecomesfasterandmoresuperficialwhenweathermakestheperceivedusefulnessofanappliancemoresalient.
Weexaminepotentialalternativeexplanationsforourresults.Rationalbehaviormayexplainusers’be-haviorinseveralways.First,customerscouldbealreadysetonbuyingtheapplianceandweatherjustinfluencesthetimingofthepurchase,inducingthemto"pullthetrigger"onit.Inthiscase,wewould
3
observeaweather-inducedintertemporalsubstitutionofsalesinourdata.Second,weathermayleadcus-tomerstousetheapplianceandrealizethatitisbroken.Underthisscenario,ourresultswouldbedrivenbyappliancereplacements.Third,weathermayallowuserstoacquirenewknowledgeconnectedtotheusefulnessoftheappliance.Fourth,thepurchasemayaddresstheneedtourgentlydealwiththeweatherconditions.Ourfindingscouldalsobeexplainedbyrationallearningaboutfuturetemperaturesorbyageneraltendencytoremainhome,search,andbuyunderparticularweatherconditions.Finally,selec-tionissuesandtheimpactofheatoncognitiveperformancecouldalsobepotentialdriversoftheresults.Throughaseriesofancillaryexercisesandanalyses,weprovideevidencethatourdataarenotconsistentwithanyofthesemechanismsandinsteadfurthersupportsalienceasthekeychannelbehindtheimpactofweatheronactualinvestmentdecisions.
Ouranalysishaslimitations.First,wecanonlyobserveusersontheretailer’swebsite.Thissettingallowsustoobservebehaviorunderminimaldemandeffects,butourresultscanonlyspeakoftheeffectofdailyweatheronsalesonthewebsite,ratherthanonoverallpurchasesonthemarket.Second,theretailerdidnotprovideuswithdataonprices.Weaddressthislimitationintwoways.Weretrievepricesforasubsetofproductsinoursamplethroughwebscrapingandpricetrackingservices.Inaddition,wehavedataonthepromotionsactiveonproductsandalwayscontrolforthemintheanalysis.Third,ourdatadoesnotincludeanyinformationonthesupplyside.Wedonotknowhowthestockofappliancesindifferentenergyclasseschangedwiththeweather,norwhethertheretailerplacedcertainproductsonsalemoreprominentlydependingontheweather.Wetestforthepresenceofweather-relatedstrategicbehavioronthepartoftheretailer,butourabilitytoexplorethischannelislimited.Finally,wehavenoproxyforpurchases’welfareimpact,suchastheprobabilityofreturns,asin
Conlinetal.
(2007)
.
Ourresultsareimportantfromapolicyperspective.ACsanddryersareexpensive,withimpactsonresidentialenergyuselastingupto15years.Spacecoolingandclothesdryingareresponsiblefornearly
20and6percentofresidentialbuildings’energyconsumption,respectively(IEA,
2018;
Bendt,
2010)
.ACgeneratesadditionalimpactsonglobalwarmingduetoitsemissionsofgreenhousegasesbutisalso
acriticaltoolinadaptingtorisingglobaltemperatures,whichexplainsitsgrowingadoptionrates(Colelli
etal.,
2023).Understandingwhetherdecisionswithsuchlargeandlong-lastingenvironmentalimpacts
aresubjecttobiasisimportanttodesigningpoliciesthatmaximizeconsumerandsocialwelfare.Effectivepolicyresponse,however,requiresidentifyingwhichbiasisatwork.OurresultssuggestthateffortstomaketheinformationonACenergyefficiencysalientshouldbehighestonhotdayswhenweatherincreasessalesofthistypeofgood.Policymakersshouldalsoprotectconsumersfrommarketingstrategiesexploitingsaliencebiases.
Thispaper’sresultscontributetotheliteratureonprojectionandsaliencebiasinconsumerpurchases.
Severalstudiesshowtheimpactofdailyweatherorpollutiononconsumers’decisions(Conlinetal.,
4
2007;
Busseetal.,
2015;
AclandandLevy,
2015;
BuchheimandKolaska,
2017;
Changetal.,
2018;
Qinetal.,
2019;
Liao,
2020;
Lamp,
2023)andlifechoiceswithlong-lastingconsequences(Simonsohn,
2010)
.1
Comparedtothesepapers,ourstudyhasuniquedataonthesearchprocessthatallowsustoanalyzedecision-makingfromthestart.Byexploitingthesesearchdataandinformationonapplianceenergy-efficiencyclasses,ourpaperprovidesadditionalevidenceontheprocessbehindsalience-induceddecisions.Moreover,theavailabledataonbothACanddryersallowustotestthebroadersalience-inducedeffectsofweatheronsales.Asin
Busseetal.
(2015),wedocumentthatsalienceandprojectionbiascan
leadtoachangeinthesaleprobabilityinbothdirections.
Heetal.
(2022)specificallyanalyzedtheeffect
ofweatheronthedecisiontopurchaseACsandfoundthatdeviationsfromcomforttemperatureincrease
thelikelihoodofpurchasingEnergyStarmodels.Weimproveonthispaperbyprovidingevidenceonsearch;byusingamorepreciseindicatorofenergyefficiency,i.e.,EUenergyclasses;andbyanalyzingtheimpactofweatheratfinertemporalgranularity(weekly).
Studiestypicallypitsalienceandprojectionbiasastwoalternativemechanisms.However,despiteagree-ingthatbotharebehindtheevidencetheypresent,theycannotultimatelydistinguishempiricallybetweenthem.Recenttheoreticaldevelopmentsinthesalienceliteratureovercomethedistinctionbetweenthesetwomechanismsbymakingprojectionbiasamanifestationofthebroadereffectsofsalientstimulion
attentionandchoice(Bordaloetal.,
2022).Weapplythisframeworktoexplainourfindings.Inaddition,
ouranalysisofsearchprovidesthefirstevidence,tothebestofourknowledge,ofhowbottom-upsalienceaffectshowindividualsseekandattendtoinformation.
Theremainderofthepaperisorganizedasfollows.Section
2
describesthefieldwheretheanalysisisconducted,Section
3
providesatheoreticalframeworkforourfindings,Section
4
describestheempiricalapproachandpresentsresultsforACanddryers,Section
5
discussespossiblealternativemechanismsandSection
6
concludes.
2Settinganddata
WeusedatafromalargeItalianonlineretailer.Wecanaccessconsumers’searchandpurchasingdataandexaminethedecision-makingprocessanditsoutcomes.Althoughonlyabout16percentofappliancesalesoccurredonlineinItalyduring2018,onlinechannelsplayedacrucialroleinpurchasedecisions:74
percentofbuyersoflargeappliancesinitiatedtheirsearchonline(Flaviánetal.,
2020).Restrictionsdueto
theCOVID-19pandemichavecauseda64percentincreaseinonlinesalesinEurope.2
Reopeningphysicalstoreshasnotrestoredonlinesalestotheirprepandemicvalues.Thesefigureshighlighttherelevanceof
1
Projectionbiasisdocumentednotonlyinthefieldbutalsoinexperimentalsettings(AugenblickandRabin,
2019)
.
2Source:Eurostat,availableat
https://ec.europa.eu/eurostat/statistics-explained/index.php?
title=E-commerce_statistics_for_individuals.
5
theonlinesettingnowandinthefuture.
ThepenetrationratesofACsanddryersinItalyarestilllimited,thoughrapidlygrowing.In2021,only48.8and15.2percentofItalianfamiliesownedanACandadryer,respectively
ISTAT
(2022)
.Thesefigureswere29.4and3.3percentin2013
ISTAT
(2014)
.Thelifecycleisestimatedtobearound15yearsforACsand13yearsfordryers.Therefore,weexpectthatinourdata,theseappliancesaremainlypurchasedforthefirsttime.
Ourdatacomprisethefullnavigationhistoryof112,428websiteusersbetweenJune1andOctober16,2018.WeidentifycustomersprimarilythroughtheirregistrationID.Usersmakingapurchasemustbeloggedintothewebsite.Instead,simplynavigatingthewebsitedoesnotrequireuserstoberegisteredorloggedin.Inthesecases,weidentifyusersthroughcookie-basedtracking.Cookiesarelinkedtothecomputer’sIPaddressandbrowser.Thisimpliesthatwecannotidentifyasthesameusersomeonewhovisitsthewebsitefromdifferentcomputersorbrowsersorclearscookies.Wealsocannotdistinguishifmultipleindividualsviewthewebsitefromthesamesharedcomputer.Theselimitationsprimarilyaffectourabilitytofollowusers’fullnavigationhistoryiftheyarenotlogged-intothewebsitewhenbrowsing,
henceouranalysisofsearchbehavior.3
Foreachpageviewedbyauserduringthestudyperiod,wehaveinformationonthetypeofproductviewed(AC,dryer,washingmachine,dishwasher,refrigerator,freezer),thetypeofpage(e.g.,product,listing,orcart),andthenumberofsecondsspentonthepage.Wealsoknowwhethertheuserorderedtheproduct.Wematchthenavigationdatawithproductdataobtainedfromtheretailer.Wehaveinformationontheenergyclassforeachmodel,identifiedbyauniqueproductidentifier.TheEUenergylabelisdisplayedoneachproductpageandliststheenergyconsumptioninkWhandtheenergyclass(Figure
A.1)
.En-ergyclassesaretheresultsofengineeringestimatesbasedontheappliance’ssize,energyconsumption,
andotherparametersandrangefromD(leastefficient)toA+++(mostefficient).4
Energyclassesareanimportanttoolforconsumerstogaugeenergyefficiency,giventhecomplexityofenergyconsumptionin-
formationexpressedinkWh(d’Addaetal.,
2022;
Houde,
2018).Labelsbasedonsimilarenergy-efficiency
classesarewidelyusedworldwide,suchasinChina,India,Brazil,andSouthKorea.
Ourdataincludeotherproductinformation.ForACs,weknowwhethertheyareportableorfixed.Forallappliances,wehaveinformationonactivepromotionsonthedayofnavigation,suchasfreedeliveryorzerointerestrateforpaymentsininstallments.Theretailerdatadonotincludeproductprices.WeretrievedthisinformationtothebestofourabilitythroughwebscrapingbetweenJuneandJuly2022.Weusedproductcodestocollectcurrentpricesfromthesameonlineretailerorothermajorretailersforalltheproductsstillonthemarketin2022.Wegatheredpriceinformationfor220ACmodels(outof517in
3See
d’Addaetal.
(2022)formoreinformation.
4ThenewEUenergylabel,introducedin2021,relabeledenergyclassesonascalefromG(leastefficient)toA(mostefficient)withoutchanginghowefficiencyiscalculated.
6
oursample)and168dryermodels(outof282).Thesepricesareusedtocontrolfortherelativepriceofproductsbyenergyclass.Evenifthepricelevelshavechangedintwoyears,therelativepricesofproductsindifferentenergyclassesshouldnotdiffer.Weprovidesuggestivesupportforthisclaimbycollecting2018pricesthroughanonlinetracker.Theyareonlyavailablefor22ACmodels.Finally,forACs,weusewebscrapingtocollectinformationontheirsize,proxiedbythenumberofexternalandinternalunitsassociatedwitheachproductcode,forthesamesampleofmodelsforwhichwecollect2022prices.
AppendixTable
A.1
providestheaveragepricesin2022byenergyclass.Higherenergyefficiencycor-respondstohigherprices,asexpected.ForthelimitedsampleofACs(22)forwhichwehaveboth2022and2018prices,thePearsoncorrelationis0.80.Thesestatisticsvalidatetheuseof2022priceswhenwespecificallyanalyzepurchasesofappliancesinthedifferentenergyclasses.
WegeolocateIPaddressestoidentifyusers’municipalitiesduringbrowsing,whichallowsustomatchuserswithweatherdata.Wecollectmeantemperature,windspeed,andrainfallforeachdayandmu-nicipality.ThesourceformeteorologicaldataistheE-OBSTemperatureandPrecipitationDataSets
(Cornesetal.,
2018),anensembledatasetavailableona0.1-and0.25-degreeresolution.Wedownscale
thegriddeddatatoamunicipallevel,averagingeachmunicipalcentroid’sfournearestgriddedpoints.Inaddition,from
Mistry
(2020),weretrieveinformationonthethermaldiscomfortindex,whichincludes
differentmeteorologicaldriversofdiscomfort,suchastemperatureandhumidity.5
3Theoreticalframework
Recentcontributionstothetheoreticalliteratureonsalienceattempttointerpretwithinthesameframeworkresultspreviouslyexplainedbyseparatemodels,suchasprojectionbias,presentbias,reference-pointde-pendence,andframingeffects.ThecriticalinsightoftheunifiedmodelproposedbyBGSisthatattentionisinfluenced,bottom-up,bysalientenvironmentalstimuli.Contrastwithsurroundings,surpriserelativetopriorexperiences,andprominencewithinthedecisioncontextdeterminesalience.Saliencecandistractdecision-makersfromtheirgoalsorotherrelevantchoiceattributes.Inoursetting,hightemperatureorotherweathervariablesvarythesalienceoftheattributeslinkedtotheappliances’usefulness.WeatherthusaffectsthelikelihoodofsalesofACsanddryersthroughitsimpactontheirperceivedusefulness.
WeadapttheframeworkproposedbyBGStoformallyexplainhowweatherconditionsaffecttheusers’valuationofthetwoappliances.WedenotetheK>1attributesofACsordryersas(a1,...,aK)anddistinguishbetweenthosewhosesalienceisinfluencedbyenvironmentalstimuli,belongingtosubsetP,
andthosenotdirectlyinfluenced,belongingtosubsetI.Theintrinsicvaluationofthegoodis:
5Thedatasetondiscomforthasasmallergeographicalcoveragecomparedtothatoftemperature,wind,andprecipitation.Forsixmunicipalities,wehavemissinginformationondiscomfort.
7
Vp=wkπka+kπka(1)
Thefirsttermcapturesthevaluationofattributes(ak)k=P,thesecondtermcapturesthevaluationoffea-
tures(ak)k=I,andwkandkrepresentthedistortionstodecisionweights(directlyandindirectly)induced
bysalience.arepresentsthedatabaseofnormalattributevaluesfrommemory.Inourcontext,thepromi-
nenceofanattributeistriggeredbyvariationsinoutsidedailyweatherthataffectthedecisionweightattachedtoit(πk
).AcrucialattributethatispartofthesubsetPinthefirsttermofEquation(1)isthe
usefulnessoftheappliance(theabilitytocoolaroomordryclothes).Heatdistortsupwardthevaluation
ofthisattributeforAC,whilecoldtemperatureandlackofwinddistortitupwardfordryers.Therefore,weexpectthathighertemperatureincreasestheprobabilityofpurchasinganACandlowertemperatureandhigherwindspeedincreasetheprobabilityofpurchasingadryer.
Weassumeweightnormalizationasin
Bordaloetal.
(2012,
2013),whichimpliesthattheattentiondevoted
toasalientattributeisdivertedfromnonsalientones.
wkπk+kπk=1(2)
Whenitiswarmer,thehighsalienceoftheusefulnessoftheACsobscurestheirotherattributes,suchasenergyefficiency,thatarepartofthesubset
IinthesecondtermofEquation(1)
.Asimilareffectistriggeredbylowertemperaturesandhigherwindspeedfordryers.Correspondingly,whenweathermakestheusefulnessoftheseapplianceslessprominent,otherattributesbecomerelativelymorerelevantandreceivemoreattention.Theseotherattributesmayconcernprice,energyefficiency,orotherproductdimensions.However,itishardtoidentifyandtestwhichattributes,amongthemanypossibleones,becomemoresalientduetothisprocess.
Accordingtoourmodelandempiricaltests,thepresenceofacorrelationbetweendailyweatherandpur-chasesisevidenceofbiaseddecision-making.Ouranalysiswill,thereforeattempttoruleoutalternativerationalexplanationsforacorrelationbetweenweatherandsales,suchasintertemporalsubstitution,re-placement,learningorurgencyofpurchases.Whatourmodeldoesnotclaimisthatdecision-makingatoptimalweatherisunbiasedandthatwecanquantifythemagnitudeofthebiasasweathermovesawayfromit.
8
4Results
4.1Descriptivestatistics
Thetotalsampleofusersoftheretailer’swebsiteoverthestudyperiodincludes112,428individualswhoviewedatleastoneappliancepage(AC,dryer,washingmachine,dishwasher,refrigerator,freezer)inthestudyperiod.Asubset,48,076,searchedforproductsovermultipledays.About12,984usersviewedanACpageand12,648adryerpageatleastonce.Oftheseviewers,about55percentnavigatedthewebsiteonmorethanonedayintheperiod(Table
1).Weobserve2,250salesofACsand3,424ofdryers,
respectively.1,409and2,090oftheseACanddryersales,respectively,occuraftermo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 夜場出租合同協議
- 商超餐館轉讓合同協議
- 外裝安全合同協議
- 外聘保潔合同協議
- 圖書出銷合同協議
- 商混合同供應補充協議
- 塑料磨粉加工轉讓合同協議
- 型材供貨合同協議
- 塑料紙廠采購合同協議
- 商鋪平價轉讓合同協議
- 2024年四川省成都市中考地理+生物試卷真題(含答案解析)
- 公立醫院醫療服務價格制度
- 突發環境事件應急預案評審會匯報課件-(模板)
- JGJ+196-2010建筑施工塔式起重機安裝、使用、拆卸安全技術規程
- 跌倒不良事件分析匯報課件
- 一氧化碳檢測報警器標準裝置技術報告
- JT∕T1180.4-2018交通運輸企業安全生產標準化建設基本規范第4部分:道路普貨運輸
- 《再別康橋》 統編版高中語文選擇性必修下冊
- 2024年鄭州鐵路職業技術學院單招職業適應性測試題庫必考題
- 預制箱梁施工質量保證措施
- 建筑防水工程技術規程DBJ-T 15-19-2020
評論
0/150
提交評論