未來能源研究所-日用溫度與耐用能源的銷售(英)_第1頁
未來能源研究所-日用溫度與耐用能源的銷售(英)_第2頁
未來能源研究所-日用溫度與耐用能源的銷售(英)_第3頁
未來能源研究所-日用溫度與耐用能源的銷售(英)_第4頁
未來能源研究所-日用溫度與耐用能源的銷售(英)_第5頁
已閱讀5頁,還剩97頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

DailyTemperatureandSales

ofEnergy-usingDurables

JacopoBonan,CristinaCattaneo,Giovannad’Adda,andMassimoTavoni

WorkingPaper23-43

November2023

ResourcesfortheFuture

1

AbouttheAuthors

JacopoBonananaffiliatedscientistattheEuropeanInstituteonEconomicsandtheEnvironment(EIEE)andanassistantprofessorattheSchoolofManagementof

PolitecnicodiMilano.HeobtainedtheMScinEconomicsattheUniversityof

Edinburgh(UK)andthePhDinEconomicsattheUniversityofMilan-Bicocca.HehasbeenaresearchfellowattheCatholicUniversityofMilanandajuniorresearcheratFondazioneEniEnricoMattei(FEEM).Hisresearchfocusesondevelopment

economicswithanemphasisonenergyaccessandefficiency,health,agriculture,andformalandinformalfinancialinstitutions.Heisspecializedinthedesignofimpact

evaluationsandcoordinatedseveralrandomizedcontrolledtrialsinSub-Saharan

AfricaandSouthAsia.

CristinaCattaneoisascientistatEIEE,wheresheisheadoftheresearchareaon

HumanMigration.SheholdsaDPhilinEconomicsfromtheUniversityofSussex-

Brighton(UK),aPhDinEconomicsfromtheUniversitàdegliStudiinMilan(Italy),andaMAinDevelopmentEconomicsfromtheUniversityofSussex.Shehasbeeninvolvedinseveralinternationallyfundedresearchprojects,andshecoordinatedaH2020

projectonPsychological,social,andfinancialbarrierstoenergyefficiency(PENNY).From2007to2018,CristinawasaseniorresearcheratFondazioneEniEnricoMattei(FEEM).CristinaisanadjunctprofessorattheGraduateSchoolinPublicEconomics-DEFAPandpreviouslytaughtinvariousuniversitiesinItalyandabroad,bothat

undergraduateandatgraduatelevel.Hermainresearchinterestsinvolveapplied

econometrics,theeconomicsofmigration,andenergyeconomics.Shehaspublished,amongothers,forInternationalMigrationReview,JournalofDevelopmentEconomics,JournalofInternationalEconomics,JournalofHumanResources,Resourceand

EnergyEconomics,andReviewofEnvironmentalEconomicsandPolicy.

Giovannad’AddaisanassistantprofessorattheUniversityofMilanandascientistatEIEE,wheresheisheadoftheresearchareaonBehavioralScience.Previously,she

workedatMilanPolytechnicandtheUniversityofBirminghamandwasavisiting

researcheratFEEM.SheholdsaPhDinEconomicsfromBocconiUniversity,witha

thesisonnaturalresourceconservationindevelopingcountries,andanMScin

DevelopmentManagementfromLSE.DuringherPhD,GiovannawasaresearchfellowatHarvardKennedySchool,ParisSchoolofEconomicsandUniversityofZurich.

Giovanna’sresearchuseslaboratoryandfieldexperimentstoinvestigatekeydriversofpro-socialbehavior,suchasinstitutions,norms,andleadershipstructures.Her

recentworkhasfocusedontheanalysisoftheimpactofbehavioralenergyefficiencyprograms.

DailyTemperatureandSalesofEnergy-usingDurables

2

MassimoTavoniisthedirectorofEIEE.HeisalsoafullprofessorattheSchoolof

ManagementofPolitecnicodiMilano.HecoordinatedtheClimateChangeMitigationprogramatFondazioneEniEnricoMattei(FEEM)between2015and2018.HehasbeenafellowattheCenterforAdvancedStudiesinBehavioralSciencesatStanford

Universityandapost-doctoralfellowatPrincetonUniversity.Hisresearchisabout

climatechangemitigationpoliciesandhasappearedinmajorscientificjournals.HeisaleadauthoroftheIPCC(5thand6thassessmentreports),co-directsofthe

InternationalEnergyWorkshopandwasdeputyeditorforthejournal‘Climatic

Change’.HeisarecipientofagrantfromtheEuropeanResearchCouncil(ERC).Hehasadvisedseveralinternationalinstitutionsonclimatechangematters,includingtheOECD,theAsianDevelopmentBank,theWorldBank.

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin

Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis

committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesof

informationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.Theviewsexpressedherearethoseoftheindividualauthorsandmaydifferfrom

thoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyand

redistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynot

applyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethe

materialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/.

1

Dailytemperatureandsalesofenergy-usingdurables

JacopoBonan1,2,CristinaCattaneo2,Giovannad’Adda3,2,andMassimoTavoni1,2

1PolitecnicodiMilano

2RFF-CMCCEuropeanInstituteonEconomicsandtheEnvironment,Fondazione

CentroEuromediterraneosuiCambiamentiClimatici

3UniversityofMilan

Abstract

Decisionswithsignificantandlong-lastingconsequencescanbeinfluencedbyconditionsatthemomentofchoice,suchasweather.Usingadministrativedatafromanonlineretailer,weexam-inewhethertemperatureandotherweathervariablesaffectthesearchandpurchaseofenergy-usingdurables,namely,airconditioners(ACs)anddryers.WeobservemoresalesofACsonhotdaysandfewersalesofdryersonhot,windydays.Wefindnoimpactforapplianceswhoseusefulnessisnotaffectedbytheweather.ForAC,weather-inducedsearchesandpurchasesareinlower-efficiencyen-ergyclasses.Productsearchdataallowustolookintotheprocessleadinguptopurchase.ProspectiveACbuyerssearchlessintensivelywhenthetemperatureishigher,andtheoppositeholdsforbuyersofdryerswhentemperatureandwindspeedincrease.Modelsofmemoryandattentioncanexplainthesebehavioralpatterns.Understandingthesedynamicsisimportantfordesigningenergy-efficiencypolicies,giventheenergyneedsofcoolingtechnologiesandtheirincreaseddemandandusefulnessinarapidlywarmingworld.

Keywords:Projectionbias;salience;energyappliances

JELclassificationcodes:D91,D12,L81

2

1Introduction

Decisionsthathavefutureconsequencesareubiquitous.Althoughtraditionaleconomicsassumesthatindividualscancorrectlyestimatefuturecostsandbenefits,evidenceshowsthatdecisionswithlargeandlong-lastingconsequencesareheavilyinfluencedbytastes,emotions,andcircumstancesatthemomentof

choice(Busseetal.,

2015;

Simonsohn,

2010).Recentsaliencemodels(Bordaloetal.

(2022),henceforth

BGS)offeraunifyingframeworkforawiderangeofdeviationsfromstandardeconomictheory,suchas

projectionbias(Loewensteinetal.,

2003),referencedependence(Ko?szegiandRabin,

2006;

Kahneman

andTversky,

1979)andframingeffects(Bordaloetal.,

2013)

.Specifically,BGSmodelattentionasinfluenced,bottom-up,bycontrasting,surprising,orprominentstimuli.

Weanalyzeadecisionwithlong-lastingconsequences,thepurchaseofanenergy-usingdurable,andshowhowitisaffectedbydailyweather.Weconsidertwotypesofapplianceswithsignificantimpactsonhouseholdenergyconsumption:airconditioners(ACs)anddryers.UsingdatafromanItalianonlineretailer,weinvestigatetheimpactofweatheronthedecisiontobuyandthesearchprocessleadinguptoit.Wefocusontwomainweatherdimensionsthatmayaffecttheseappliances’perceivedusefulness:averagedailytemperatureandwindspeed.

WefindthathigherdailytemperatureincreasespurchasesofACsanddecreasesthoseofdryers;higherwindspeedreducesdryerpurchasesbuthasnoimpactonACs.Otherdimensionsofweathermeaningfullycorrelatewithpurchaselikelihood:anindexofdiscomfort,capturingperceivedtemperatureandincreasingwithhumidity,affectspurchasesofACsbutnotdryers.Consistentwiththeseresults,highertemperatureleadstoafastersearchprocessforACsandasloweronefordryers.TemperaturealsoimpactstheenergyefficiencyofACspurchasedandviewed,shiftingusers’attentiontowardlower-efficiencyproducts.Wefindnoeffectoftemperatureorwindspeedontheenergyefficiencyofdryersviewedorboughtoronsalesofothertypesofappliances,suchaswashingmachinesordishwashers.Ourresultsarerobusttousingvarioussamples;tocontrollingfortemporalandspatialpatternsofvariationinsales;toconsideringnon-lineareffectsoftemperature.Finally,asurvivalanalysisofthesearchprocessalsoproducesconsistentresults.

Ourfindingsareconsistentwithamodelofsalience,adaptedfromBGS,thatwepropose.Weatheraffectstheperceivedusefulnessoftheapplianceand,throughit,thelikelihoodofpurchase.Astheappliance’sattributesrelatedtoitsusefulnessbecomemoresalient,otherattributes,suchasitsenergyefficiency,loseprominence.Thesemechanismshaveimplicationsforthesearchprocess,whichbecomesfasterandmoresuperficialwhenweathermakestheperceivedusefulnessofanappliancemoresalient.

Weexaminepotentialalternativeexplanationsforourresults.Rationalbehaviormayexplainusers’be-haviorinseveralways.First,customerscouldbealreadysetonbuyingtheapplianceandweatherjustinfluencesthetimingofthepurchase,inducingthemto"pullthetrigger"onit.Inthiscase,wewould

3

observeaweather-inducedintertemporalsubstitutionofsalesinourdata.Second,weathermayleadcus-tomerstousetheapplianceandrealizethatitisbroken.Underthisscenario,ourresultswouldbedrivenbyappliancereplacements.Third,weathermayallowuserstoacquirenewknowledgeconnectedtotheusefulnessoftheappliance.Fourth,thepurchasemayaddresstheneedtourgentlydealwiththeweatherconditions.Ourfindingscouldalsobeexplainedbyrationallearningaboutfuturetemperaturesorbyageneraltendencytoremainhome,search,andbuyunderparticularweatherconditions.Finally,selec-tionissuesandtheimpactofheatoncognitiveperformancecouldalsobepotentialdriversoftheresults.Throughaseriesofancillaryexercisesandanalyses,weprovideevidencethatourdataarenotconsistentwithanyofthesemechanismsandinsteadfurthersupportsalienceasthekeychannelbehindtheimpactofweatheronactualinvestmentdecisions.

Ouranalysishaslimitations.First,wecanonlyobserveusersontheretailer’swebsite.Thissettingallowsustoobservebehaviorunderminimaldemandeffects,butourresultscanonlyspeakoftheeffectofdailyweatheronsalesonthewebsite,ratherthanonoverallpurchasesonthemarket.Second,theretailerdidnotprovideuswithdataonprices.Weaddressthislimitationintwoways.Weretrievepricesforasubsetofproductsinoursamplethroughwebscrapingandpricetrackingservices.Inaddition,wehavedataonthepromotionsactiveonproductsandalwayscontrolforthemintheanalysis.Third,ourdatadoesnotincludeanyinformationonthesupplyside.Wedonotknowhowthestockofappliancesindifferentenergyclasseschangedwiththeweather,norwhethertheretailerplacedcertainproductsonsalemoreprominentlydependingontheweather.Wetestforthepresenceofweather-relatedstrategicbehavioronthepartoftheretailer,butourabilitytoexplorethischannelislimited.Finally,wehavenoproxyforpurchases’welfareimpact,suchastheprobabilityofreturns,asin

Conlinetal.

(2007)

.

Ourresultsareimportantfromapolicyperspective.ACsanddryersareexpensive,withimpactsonresidentialenergyuselastingupto15years.Spacecoolingandclothesdryingareresponsiblefornearly

20and6percentofresidentialbuildings’energyconsumption,respectively(IEA,

2018;

Bendt,

2010)

.ACgeneratesadditionalimpactsonglobalwarmingduetoitsemissionsofgreenhousegasesbutisalso

acriticaltoolinadaptingtorisingglobaltemperatures,whichexplainsitsgrowingadoptionrates(Colelli

etal.,

2023).Understandingwhetherdecisionswithsuchlargeandlong-lastingenvironmentalimpacts

aresubjecttobiasisimportanttodesigningpoliciesthatmaximizeconsumerandsocialwelfare.Effectivepolicyresponse,however,requiresidentifyingwhichbiasisatwork.OurresultssuggestthateffortstomaketheinformationonACenergyefficiencysalientshouldbehighestonhotdayswhenweatherincreasessalesofthistypeofgood.Policymakersshouldalsoprotectconsumersfrommarketingstrategiesexploitingsaliencebiases.

Thispaper’sresultscontributetotheliteratureonprojectionandsaliencebiasinconsumerpurchases.

Severalstudiesshowtheimpactofdailyweatherorpollutiononconsumers’decisions(Conlinetal.,

4

2007;

Busseetal.,

2015;

AclandandLevy,

2015;

BuchheimandKolaska,

2017;

Changetal.,

2018;

Qinetal.,

2019;

Liao,

2020;

Lamp,

2023)andlifechoiceswithlong-lastingconsequences(Simonsohn,

2010)

.1

Comparedtothesepapers,ourstudyhasuniquedataonthesearchprocessthatallowsustoanalyzedecision-makingfromthestart.Byexploitingthesesearchdataandinformationonapplianceenergy-efficiencyclasses,ourpaperprovidesadditionalevidenceontheprocessbehindsalience-induceddecisions.Moreover,theavailabledataonbothACanddryersallowustotestthebroadersalience-inducedeffectsofweatheronsales.Asin

Busseetal.

(2015),wedocumentthatsalienceandprojectionbiascan

leadtoachangeinthesaleprobabilityinbothdirections.

Heetal.

(2022)specificallyanalyzedtheeffect

ofweatheronthedecisiontopurchaseACsandfoundthatdeviationsfromcomforttemperatureincrease

thelikelihoodofpurchasingEnergyStarmodels.Weimproveonthispaperbyprovidingevidenceonsearch;byusingamorepreciseindicatorofenergyefficiency,i.e.,EUenergyclasses;andbyanalyzingtheimpactofweatheratfinertemporalgranularity(weekly).

Studiestypicallypitsalienceandprojectionbiasastwoalternativemechanisms.However,despiteagree-ingthatbotharebehindtheevidencetheypresent,theycannotultimatelydistinguishempiricallybetweenthem.Recenttheoreticaldevelopmentsinthesalienceliteratureovercomethedistinctionbetweenthesetwomechanismsbymakingprojectionbiasamanifestationofthebroadereffectsofsalientstimulion

attentionandchoice(Bordaloetal.,

2022).Weapplythisframeworktoexplainourfindings.Inaddition,

ouranalysisofsearchprovidesthefirstevidence,tothebestofourknowledge,ofhowbottom-upsalienceaffectshowindividualsseekandattendtoinformation.

Theremainderofthepaperisorganizedasfollows.Section

2

describesthefieldwheretheanalysisisconducted,Section

3

providesatheoreticalframeworkforourfindings,Section

4

describestheempiricalapproachandpresentsresultsforACanddryers,Section

5

discussespossiblealternativemechanismsandSection

6

concludes.

2Settinganddata

WeusedatafromalargeItalianonlineretailer.Wecanaccessconsumers’searchandpurchasingdataandexaminethedecision-makingprocessanditsoutcomes.Althoughonlyabout16percentofappliancesalesoccurredonlineinItalyduring2018,onlinechannelsplayedacrucialroleinpurchasedecisions:74

percentofbuyersoflargeappliancesinitiatedtheirsearchonline(Flaviánetal.,

2020).Restrictionsdueto

theCOVID-19pandemichavecauseda64percentincreaseinonlinesalesinEurope.2

Reopeningphysicalstoreshasnotrestoredonlinesalestotheirprepandemicvalues.Thesefigureshighlighttherelevanceof

1

Projectionbiasisdocumentednotonlyinthefieldbutalsoinexperimentalsettings(AugenblickandRabin,

2019)

.

2Source:Eurostat,availableat

https://ec.europa.eu/eurostat/statistics-explained/index.php?

title=E-commerce_statistics_for_individuals.

5

theonlinesettingnowandinthefuture.

ThepenetrationratesofACsanddryersinItalyarestilllimited,thoughrapidlygrowing.In2021,only48.8and15.2percentofItalianfamiliesownedanACandadryer,respectively

ISTAT

(2022)

.Thesefigureswere29.4and3.3percentin2013

ISTAT

(2014)

.Thelifecycleisestimatedtobearound15yearsforACsand13yearsfordryers.Therefore,weexpectthatinourdata,theseappliancesaremainlypurchasedforthefirsttime.

Ourdatacomprisethefullnavigationhistoryof112,428websiteusersbetweenJune1andOctober16,2018.WeidentifycustomersprimarilythroughtheirregistrationID.Usersmakingapurchasemustbeloggedintothewebsite.Instead,simplynavigatingthewebsitedoesnotrequireuserstoberegisteredorloggedin.Inthesecases,weidentifyusersthroughcookie-basedtracking.Cookiesarelinkedtothecomputer’sIPaddressandbrowser.Thisimpliesthatwecannotidentifyasthesameusersomeonewhovisitsthewebsitefromdifferentcomputersorbrowsersorclearscookies.Wealsocannotdistinguishifmultipleindividualsviewthewebsitefromthesamesharedcomputer.Theselimitationsprimarilyaffectourabilitytofollowusers’fullnavigationhistoryiftheyarenotlogged-intothewebsitewhenbrowsing,

henceouranalysisofsearchbehavior.3

Foreachpageviewedbyauserduringthestudyperiod,wehaveinformationonthetypeofproductviewed(AC,dryer,washingmachine,dishwasher,refrigerator,freezer),thetypeofpage(e.g.,product,listing,orcart),andthenumberofsecondsspentonthepage.Wealsoknowwhethertheuserorderedtheproduct.Wematchthenavigationdatawithproductdataobtainedfromtheretailer.Wehaveinformationontheenergyclassforeachmodel,identifiedbyauniqueproductidentifier.TheEUenergylabelisdisplayedoneachproductpageandliststheenergyconsumptioninkWhandtheenergyclass(Figure

A.1)

.En-ergyclassesaretheresultsofengineeringestimatesbasedontheappliance’ssize,energyconsumption,

andotherparametersandrangefromD(leastefficient)toA+++(mostefficient).4

Energyclassesareanimportanttoolforconsumerstogaugeenergyefficiency,giventhecomplexityofenergyconsumptionin-

formationexpressedinkWh(d’Addaetal.,

2022;

Houde,

2018).Labelsbasedonsimilarenergy-efficiency

classesarewidelyusedworldwide,suchasinChina,India,Brazil,andSouthKorea.

Ourdataincludeotherproductinformation.ForACs,weknowwhethertheyareportableorfixed.Forallappliances,wehaveinformationonactivepromotionsonthedayofnavigation,suchasfreedeliveryorzerointerestrateforpaymentsininstallments.Theretailerdatadonotincludeproductprices.WeretrievedthisinformationtothebestofourabilitythroughwebscrapingbetweenJuneandJuly2022.Weusedproductcodestocollectcurrentpricesfromthesameonlineretailerorothermajorretailersforalltheproductsstillonthemarketin2022.Wegatheredpriceinformationfor220ACmodels(outof517in

3See

d’Addaetal.

(2022)formoreinformation.

4ThenewEUenergylabel,introducedin2021,relabeledenergyclassesonascalefromG(leastefficient)toA(mostefficient)withoutchanginghowefficiencyiscalculated.

6

oursample)and168dryermodels(outof282).Thesepricesareusedtocontrolfortherelativepriceofproductsbyenergyclass.Evenifthepricelevelshavechangedintwoyears,therelativepricesofproductsindifferentenergyclassesshouldnotdiffer.Weprovidesuggestivesupportforthisclaimbycollecting2018pricesthroughanonlinetracker.Theyareonlyavailablefor22ACmodels.Finally,forACs,weusewebscrapingtocollectinformationontheirsize,proxiedbythenumberofexternalandinternalunitsassociatedwitheachproductcode,forthesamesampleofmodelsforwhichwecollect2022prices.

AppendixTable

A.1

providestheaveragepricesin2022byenergyclass.Higherenergyefficiencycor-respondstohigherprices,asexpected.ForthelimitedsampleofACs(22)forwhichwehaveboth2022and2018prices,thePearsoncorrelationis0.80.Thesestatisticsvalidatetheuseof2022priceswhenwespecificallyanalyzepurchasesofappliancesinthedifferentenergyclasses.

WegeolocateIPaddressestoidentifyusers’municipalitiesduringbrowsing,whichallowsustomatchuserswithweatherdata.Wecollectmeantemperature,windspeed,andrainfallforeachdayandmu-nicipality.ThesourceformeteorologicaldataistheE-OBSTemperatureandPrecipitationDataSets

(Cornesetal.,

2018),anensembledatasetavailableona0.1-and0.25-degreeresolution.Wedownscale

thegriddeddatatoamunicipallevel,averagingeachmunicipalcentroid’sfournearestgriddedpoints.Inaddition,from

Mistry

(2020),weretrieveinformationonthethermaldiscomfortindex,whichincludes

differentmeteorologicaldriversofdiscomfort,suchastemperatureandhumidity.5

3Theoreticalframework

Recentcontributionstothetheoreticalliteratureonsalienceattempttointerpretwithinthesameframeworkresultspreviouslyexplainedbyseparatemodels,suchasprojectionbias,presentbias,reference-pointde-pendence,andframingeffects.ThecriticalinsightoftheunifiedmodelproposedbyBGSisthatattentionisinfluenced,bottom-up,bysalientenvironmentalstimuli.Contrastwithsurroundings,surpriserelativetopriorexperiences,andprominencewithinthedecisioncontextdeterminesalience.Saliencecandistractdecision-makersfromtheirgoalsorotherrelevantchoiceattributes.Inoursetting,hightemperatureorotherweathervariablesvarythesalienceoftheattributeslinkedtotheappliances’usefulness.WeatherthusaffectsthelikelihoodofsalesofACsanddryersthroughitsimpactontheirperceivedusefulness.

WeadapttheframeworkproposedbyBGStoformallyexplainhowweatherconditionsaffecttheusers’valuationofthetwoappliances.WedenotetheK>1attributesofACsordryersas(a1,...,aK)anddistinguishbetweenthosewhosesalienceisinfluencedbyenvironmentalstimuli,belongingtosubsetP,

andthosenotdirectlyinfluenced,belongingtosubsetI.Theintrinsicvaluationofthegoodis:

5Thedatasetondiscomforthasasmallergeographicalcoveragecomparedtothatoftemperature,wind,andprecipitation.Forsixmunicipalities,wehavemissinginformationondiscomfort.

7

Vp=wkπka+kπka(1)

Thefirsttermcapturesthevaluationofattributes(ak)k=P,thesecondtermcapturesthevaluationoffea-

tures(ak)k=I,andwkandkrepresentthedistortionstodecisionweights(directlyandindirectly)induced

bysalience.arepresentsthedatabaseofnormalattributevaluesfrommemory.Inourcontext,thepromi-

nenceofanattributeistriggeredbyvariationsinoutsidedailyweatherthataffectthedecisionweightattachedtoit(πk

).AcrucialattributethatispartofthesubsetPinthefirsttermofEquation(1)isthe

usefulnessoftheappliance(theabilitytocoolaroomordryclothes).Heatdistortsupwardthevaluation

ofthisattributeforAC,whilecoldtemperatureandlackofwinddistortitupwardfordryers.Therefore,weexpectthathighertemperatureincreasestheprobabilityofpurchasinganACandlowertemperatureandhigherwindspeedincreasetheprobabilityofpurchasingadryer.

Weassumeweightnormalizationasin

Bordaloetal.

(2012,

2013),whichimpliesthattheattentiondevoted

toasalientattributeisdivertedfromnonsalientones.

wkπk+kπk=1(2)

Whenitiswarmer,thehighsalienceoftheusefulnessoftheACsobscurestheirotherattributes,suchasenergyefficiency,thatarepartofthesubset

IinthesecondtermofEquation(1)

.Asimilareffectistriggeredbylowertemperaturesandhigherwindspeedfordryers.Correspondingly,whenweathermakestheusefulnessoftheseapplianceslessprominent,otherattributesbecomerelativelymorerelevantandreceivemoreattention.Theseotherattributesmayconcernprice,energyefficiency,orotherproductdimensions.However,itishardtoidentifyandtestwhichattributes,amongthemanypossibleones,becomemoresalientduetothisprocess.

Accordingtoourmodelandempiricaltests,thepresenceofacorrelationbetweendailyweatherandpur-chasesisevidenceofbiaseddecision-making.Ouranalysiswill,thereforeattempttoruleoutalternativerationalexplanationsforacorrelationbetweenweatherandsales,suchasintertemporalsubstitution,re-placement,learningorurgencyofpurchases.Whatourmodeldoesnotclaimisthatdecision-makingatoptimalweatherisunbiasedandthatwecanquantifythemagnitudeofthebiasasweathermovesawayfromit.

8

4Results

4.1Descriptivestatistics

Thetotalsampleofusersoftheretailer’swebsiteoverthestudyperiodincludes112,428individualswhoviewedatleastoneappliancepage(AC,dryer,washingmachine,dishwasher,refrigerator,freezer)inthestudyperiod.Asubset,48,076,searchedforproductsovermultipledays.About12,984usersviewedanACpageand12,648adryerpageatleastonce.Oftheseviewers,about55percentnavigatedthewebsiteonmorethanonedayintheperiod(Table

1).Weobserve2,250salesofACsand3,424ofdryers,

respectively.1,409and2,090oftheseACanddryersales,respectively,occuraftermo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論