




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省北師大萬寧附中2023屆高三第一次聯考(數學試題)試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.2.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.83.若復數滿足(是虛數單位),則()A. B. C. D.4.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.5.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q6.在中所對的邊分別是,若,則()A.37 B.13 C. D.7.已知集合,,則()A. B. C. D.8.已知,,,則()A. B.C. D.9.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.710.函數的大致圖像為()A. B.C. D.11.設,則,則()A. B. C. D.12.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則繞所在直線旋轉一周所形成的幾何體的表面積為______________.14.已知集合,,則____________.15.已知多項式滿足,則_________,__________.16.已知為正實數,且,則的最小值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.19.(12分)已知函數,.(Ⅰ)判斷函數在區間上零點的個數,并證明;(Ⅱ)函數在區間上的極值點從小到大分別為,,證明:20.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數,得到如下頻數分布表:送餐單數3839404142甲公司天數101015105乙公司天數101510105(1)從記錄甲公司的天送餐單數中隨機抽取天,求這天的送餐單數都不小于單的概率;(2)假設同一公司的送餐員一天的送餐單數相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數學期望;②小張打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,小張應選擇哪家公司應聘?說明你的理由.21.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.22.(10分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
求得點坐標,由此求得直線的方程,聯立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎題.2、A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.3、B【解析】
利用復數乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數的乘法運算,考查復數模的計算,屬于基礎題.4、C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.5、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。6、D【解析】
直接根據余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.7、B【解析】
求出集合,利用集合的基本運算即可得到結論.【詳解】由,得,則集合,所以,.故選:B.【點睛】本題主要考查集合的基本運算,利用函數的性質求出集合是解決本題的關鍵,屬于基礎題.8、C【解析】
利用二倍角公式,和同角三角函數的商數關系式,化簡可得,即可求得結果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應用和弦化切化簡三角函數,難度較易.9、B【解析】
根據拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題.10、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11、A【解析】
根據換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數的運算,屬于中檔題.12、A【解析】
根據球的特點可知截面是一個圓,根據等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據圓錐側面積計算公式可得.【詳解】解:由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉體的表面積計算問題,屬于基礎題.14、【解析】
由于,,則.15、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數為∴∴∴令,得故答案為5,7216、【解析】
,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當且僅當,即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數方程中的參數即可得到其普通方程;將曲線極坐標方程化為,根據極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數方程代入曲線的直角坐標方程,根據參數的幾何意義可知,利用韋達定理求得結果.【詳解】(1)由直線參數方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數分別為:,則,【點睛】本題考查極坐標與直角坐標的互化、參數方程與普通方程的互化、直線參數方程中參數的幾何意義的應用;求解距離之和的關鍵是能夠明確直線參數方程中參數的幾何意義,利用韋達定理來進行求解.18、(1):;:.(2)【解析】
(1)由可得,由,消去參數,可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為.(2)由(1)得,的普通方程為,將其化為極坐標方程可得,當時,,,所以.19、(Ⅰ)函數在區間上有兩個零點.見解析(Ⅱ)見解析【解析】
(Ⅰ)根據題意,,利用導函數研究函數的單調性,分類討論在區間的單調區間和極值,進而研究零點個數問題;(Ⅱ)求導,,由于在區間上的極值點從小到大分別為,,求出,利用導數結合單調性和極值點,即可證明出.【詳解】解:(Ⅰ),,當時,,,在區間上單調遞減,,在區間上無零點;當時,,在區間上單調遞增,,在區間上唯一零點;當時,,,在區間上單調遞減,,;在區間上唯一零點;綜上可知,函數在區間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調性,,,,,由函數在單調遞增,得,,由在單調遞減,得,即,故.【點睛】本題考查利用導數研究函數的單調性和極值,通過導數解決函數零點個數問題和證明不等式,考查轉化思想和計算能力.20、(1);(2)①分布列見解析,;②小張應選擇甲公司應聘.【解析】
(1)記抽取的3天送餐單數都不小于40為事件,可得(A)的值.(2)①設乙公司送餐員送餐單數為,可得當時,,以此類推可得:當時,當時,的值.當時,的值,同理可得:當時,.的所有可能取值.可得的分布列及其數學期望.②依題意,甲公司送餐員日平均送餐單數.可得甲公司送餐員日平均工資,與乙數學期望比較即可得出.【詳解】解:(1)由表知,50天送餐單數中有30天的送餐單數不小于40單,記抽取的3天送餐單數都不小于40為事件,則.(2)①設乙公司送餐員的送餐單數為,日工資為元,則當時,;當時,;當時,;當時,;當時,.所以的分布列為228234240247254.②依題意,甲公司送餐員的日平均送餐單數為,所以甲公司送餐員的日平均工資為元,因為,所以小張應選擇甲公司應聘.【點睛】本題考查了隨機變量的分布列與數學期望、古典概率計算公式、組合計算公式,考查了推理能力與計算能力,屬于中檔題.21、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數列的通項公式,考查裂項求和,是基礎題.22、(1)(2)為定值.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年安丘市職業中等專業學校專任教師招聘真題
- 2024年安徽天柱山旅游學校專任教師招聘真題
- 2024年安徽亳州機電信息工程學校專任教師招聘真題
- 人教初中地理八下河南省新鄉市期末地理試卷(解析版)
- 采耳店合同范本
- 機場消殺合同范本
- 二年級上冊數學教案-1.3星星合唱隊 |北師大版
- 遼寧省名校聯盟2025屆高三下學期一模地理試題 含解析
- 小區綠化設施合同范本
- 合伙開店合同范本模板
- 2024北京海淀區初二一模生物試卷和答案
- 湖北省武漢市江岸區2023-2024學年八年級下學期期中物理試題(解析版)
- 內蒙古呼和浩特市第十六中學2024-2025學年高二語文上學期期中試題無答案
- 第一單元 歌唱祖國-《 中華人民共和國國歌》課件 2023-2024學年人音版初中音樂七年級上冊
- 智能導盲杖畢業設計創新創業計劃書2024年
- 市政道路及設施零星養護服務技術方案(技術標)
- CQI-8分層過程審核指南(附全套表格)
- 搞好班組安全管理工作
- 生物醫學體系的確立與發展
- 江蘇省南京市秦淮區2023-2024學年七年級下學期期中數學試卷(含答案)
- ISO27001:2022信息安全管理手冊+全套程序文件+表單
評論
0/150
提交評論