




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
13-BasicImageOperations
YongXu(許勇)
SchoolofComputerScience&Engineering2ContentHistogramsPointoperators(點運算)Imagenoise(圖像噪聲)Groupoperations(群運算)Individualbrightnesslevels’(亮度級)occupanciesTheimagecontrastTherangeofbrightnesslevels
Howtomaketheimageclearer?3HistogramsAdvantageSimple,quick,somewhateffectiveDisadvantageCannotdescribespatialinformationCannotdescribetheimagedetails4HistogramsTwocompletelydifferentimagewhichhavesimilarhistograms5PyramidHistogram6PyramidHistogram7DistinguishableSimilarDifferentDifferentInvariant?UseafunctionThepointatthesameplaceintheoriginalimageMathematicalfunctionBasicpointoperations(基本點運算)BecomputedfromtheimageitselfHistogramnormalization(直方圖正規(guī)化)Histogramequalization(直方圖均衡化)Histogramspecification(直方圖匹配)Thresholding(閾值處理)9PointOperatorsAlinearbrightnessrelation
k:gain(增益),l:level(偏移量)
10BasicPointOperationsk=1.2l=10Originalimage11BasicPointOperationsk,l?12BasicPointOperationsk=1,l=0k=-1,l=255k=1,l=35k=1.1,l=-1013BasicPointOperationsThesawtoothoperator(鋸齒算子)AnalternativeformofthelinearoperatorEmphasizelocalcontrastchange14BasicPointOperationsy=xmod50y=xmod100y=xmod90y=xmod80y=xmod70y=xmod6015TheSawtoothOperatory=(xmod50)*255/49y=(xmod60)*255/59y=(xmod70)*255/69y=(xmod80)*255/79y=(xmod90)*255/89y=(xmod100)*255/9916TheSawtoothOperatorOriginalimagemod50mod60mod7017TheSawtoothOperatorOriginalimagemod80mod90mod100ArithmeticfunctionsLogarithm
Darker,asmallrangeofbrightnesslevels18BasicpointoperationsOriginalpictureLogarithm25log(50f(x,y))log(50f(x,y))log(f(x,y))LogarithmLogarithm19BasicPointOperationsExponent30exp(f(x,y)/100)OriginalpictureArithmeticfunctionsExponentBrighter,greatercontrastexp(f(x,y)/100)exp(f(x,y))ExponentExponentStretchandshifttheoriginalhistogramCoverallthe256availablelevels20HistogramNormalizationOriginalimageNormalizedimage21HistogramNormalizationOriginalimageNormalizationimageAnonlinearprocessandirreversibleProduceapicturewithaflatterhistogramAlllevelsareequiprobableThemappingfunctionContinuous22HistogramEqualization
ThemappingfunctionDiscrete23HistogramEqualization1399821373360646820529260
h0312243441516471829300.1210.0820.1630.1640.0450.0460.1670.0480.0890.12
f
p(i)00.1210.2020.3630.5240.5650.6060.7670.8080.8891.00
s(i)OriginalimageHistogram2400.1210.2020.3630.5240.5650.6060.7670.8080.8891.001399821373360646820529260511332552552249251133204133133194019414319422492015392255921940
f
gHistogramEqualization
s(i)
255s(i)round
numbers25HistogramEqualizationOriginalimageEqualizedimage26HistogramEqualizationOriginalimageEqualizationimage27HistogramEqualization28HistogramEqualizationNormalizationEqualization29HistogramEqualizationOriginalimageNormalization
Equalization30HistogramEqualizationOriginalimageNormalization
Equalization31HistogramEqualizationOriginalimageNormalization
Equalization32HistogramEqualizationOriginalimageNormalization
Equalization33HistogramEqualizationOriginalimageNormalization
Equalization34HistogramEqualizationOriginalimageNormalization
EqualizationForthecolorimageDohistogramnormalizationineachchannelDohistogramequalizationineachchannel35HistogramEqualizationChannel1Channel2Channel3OriginalimageNormalization
EqualizationHistogramnormalizationAlinearprocessandreversibleHistogramequalizationAnonlinearprocessandirreversible36HistogramEqualizationTheconvertedimagehasaparticularhistogram.ContinuousDiscrete37HistogramSpecificationOriginal->equalizeDesired->equalizeFinalOriginal->equalizeDesired->equalizeFinal38HistogramSpecificationDesiredequalizeequalizegg-1OriginalFinalminimal39HistogramSpecificationxipx(i)f00.190.1910.250.4420.210.6530.160.8140.080.8950.060.9560.030.9870.021.00gpz(i)zi0.000.0000.000.0010.000.0020.150.1530.350.2040.650.3050.850.2061.000.157zipz(i)00.0010.0020.0030.1940.2550.2160.2470.11Selectspixels
AparticularvalueAspecifiedrangeUniformthresholding(均一閾值處理)Requireknowledgeofthegraylevel
40ThresholdingOriginalimageT=160OriginalimageT=125Adaptivethresholding(自適應(yīng)閾值處理)Otsu’smethodMaxthefollowingvaluewhere41ThresholdingContrast42ThresholdingOriginalimageT=160OstuT=127OstuT=117T=125OriginalimageRandomvariationofbrightnessorcolorinformationElectronicnoiseAddspuriousandextraneousinformationProduceThesensor
Circuitryofa
scanner
or
digitalcamera…TypesGaussiannoise(高斯噪聲)Saltandpeppernoise(椒鹽噪聲)43ImageNoisePrincipalsourcesSensornoisePoorilluminationHightemperatureElectroniccircuitnoiseNoiseIndependentateachpixelIndependentofthesignalintensityGaussian-distributed44GaussianNoiseg(x,y,i)=f(x,y,i)+noisef(x,y,i)eachpixelineachchanneloftheoriginalimagex,y:location,i:channelg(x,y,i):eachpixelineachchanneloftheGaussiannoiseimagex,y:location,i:channel
Noise
obeys
a
Gaussian
distributionG(μ,σ)45GaussianNoiseImageGaussiannoiseOriginalimageG(0,1)PrincipalsourcesAnalog-to-digitalconvertererrorsBiterrorsintransmissionNoiseSaltnoiseNoisepoints’valuesare255.PeppernoiseNoisepoints’valuesare0.RandomThenoisedensityisaconstant.46SaltandPepperNoiseIneverychanneloftheoriginalimage
Randomchangesomepixels’values(set0or255)Letthenoisedensityisaconstant47SaltandPepperNoiseImageSaltandpeppernoiseOriginalimageNoisedensity=0.05Useapixel’sneighborhoodTemplateconvolution(模板卷積)Averagingoperator(平均算子)Gaussianaveraging(高斯平均)Medianfilter(中值濾波)Modefilter(眾數(shù)濾波)ComparisonofstatisticaloperatorsMathematicalmorphology(數(shù)學(xué)形態(tài)學(xué))48GroupOperationsTemplate--asetofweightingcoefficientsPlacethetemplateatthepointofinterest
Theconvolutionnotation49TemplateConvolutionThetemplateweightingfunctionsareunityAdvantageReducenoiseDisadvantageCauseblurringReducedetail50AveragingOperatorOndifferenttemplatesizeTemplatesareusuallyofodddimension.LargeraveragingoperatorsSmooththeimagemoreRemovemoredetail
51AveragingOperator52AveragingOperator3×35×57×7GaussiannoiseSaltandpeppernoiseOriginalimage53AveragingOperatorOriginalimage3×35×57×7ThresholdingT=10054GaussianAveragingOperatorCalculatecoefficients
Templateforthe5×5Gaussianaveragingoperator(σ=1.0).55GaussianAveragingOperator3×35×57×7GaussiannoiseSaltandpeppernoiseOriginalimageTheGaussianfiltervs.directaveragingMorefeaturesareretainedwhilethenoiseisremoved.56GaussianAveragingOperatorAveragingoperatorGaussianaveragingoperator57GaussianAveragingOperator3×35×57×7GaussiannoiseOriginalimageAveragingoperatorGaussianaveragingoperator58GaussianAveragingOperator3×35×57×7OriginalimageAveragingoperatorGaussianaveragingoperatorSaltandpeppernoise
Alternativetemplateshapes59MedianFilterCrossHorizontallineVerticallineAbilitiesRemovesaltandpeppernoiseRetainedges60MedianFilter61MedianFilterGaussiannoiseSaltandpeppernoiseOriginalimage3×35×57×7Findthebackground62MedianFilter--Application
Averaging(g)
select
middle
value
ofimage1~image6Usethemostfrequentlyoccurringpixelvalue63ModeFilter01221481773150115812191Pixels’frequency77487715877219221500774877777721922150001221481773150115812191Theorderofthemean,themedian,andthemode64ModeFilter774851158170219221500Whatshouldwedo?Thetruncatedmedianfilter(截斷中值濾波)IfthemedianislessthanthemeanIfthemedianisgreaterthanthemean65TruncatedMedianFilters=median–min,upper=median+supperminmedianmeanmaxupperminmedianmeanmaxtruncateupperminmedianmeanminmedianmeanmaxupperminmedianmeanmodeThemedianoftheremainingdistributionapproachesthemode.s=max–median,lower=median-smaxmedianmeanminmaxlowermedianmeanminmaxlowermedianmeanmintruncatemaxlowermedianmeanmaxlowermedianmeanmodeThemedianoftheremainingdistributionapproachesthemode.CharacteristicsRemovesaltandpeppernoiseRetainfeatureboundariesExperience66TruncatedMedianFilter67TruncatedMedianFilterGaussiannoiseSaltandpeppernoiseOriginalimage3×35×57×7AveragingoperatorRemovemuchnoisebutblurfeatureboundariesG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 練就內(nèi)功的裁判員試題及答案
- 足球比賽中裁判職責(zé)試題及答案
- 種子質(zhì)量控制試題及答案
- 備戰(zhàn)2024年模具設(shè)計師資格認證考試試題及答案攻略
- 聚焦2024年農(nóng)作物種子繁育員考試大綱試題及答案
- 2024年體育經(jīng)紀人資格考試的主攻方向試題及答案
- 學(xué)以致用 2024年體育經(jīng)紀人考試試題及答案
- 游泳救生員考試全方位試題歸納
- 農(nóng)作物種子質(zhì)量標(biāo)準(zhǔn)解讀試題及答案
- 2025年中國乙基乙炔市場調(diào)查研究報告
- 申請法院調(diào)查取證申請書(調(diào)取銀行資金流水)
- 辦公室事故防范(典型案例分析)
- 三治融合課件講解
- 第二部分-CPO-10中央機房優(yōu)化控制系統(tǒng)
- 設(shè)計概論重點知識
- 留仙洞總部基地城市設(shè)計
- 2020新版?zhèn)€人征信報告模板
- 白血病鑒別診斷
- 貨車轉(zhuǎn)向橋設(shè)計終
- 品質(zhì)管控整改方案
- DB4406∕T 10-2021 住宅物業(yè)服務(wù)品質(zhì)分級規(guī)范
評論
0/150
提交評論