




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
本文格式為Word版,下載可任意編輯——八上數(shù)學課堂精練答案
八上數(shù)學課堂精練答案
一.細心選一選
1.以下四個數(shù)中,結果為負數(shù)的是()
A.﹣(﹣)B.|﹣|C.(﹣)2D.﹣|﹣|
考點:正數(shù)和負數(shù).
分析:根據(jù)相反數(shù),可判斷A,根據(jù)負數(shù)的絕對值,可判斷B,根據(jù)負數(shù)的偶次冪是正數(shù),可判斷C,根據(jù)絕對值的相反數(shù),可判斷D.
解答:解:A、﹣(﹣)=>0,故A錯誤;
B、|﹣|=>0,故B錯誤;
C、(﹣)2=>0,故C錯誤;
D、﹣|﹣|=﹣<0,故D正確;
應選:D.
點評:此題考察了正數(shù)和負數(shù),小于零的數(shù)是負數(shù),先化簡再判斷負數(shù).
2.以下計算正確的是()
A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72
考點:實數(shù)的運算.
分析:A、根據(jù)算術平方根的定義即可判定;
B、根據(jù)立方根的定義即可判定;
C、根據(jù)立方根的定義即可判定;
D、根據(jù)乘方運算法則計算即可判定.
解答:解:A、=3,應選項A錯誤;
B、=﹣2,應選項B正確;
C、=,應選項C錯誤;
D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,應選項D錯誤.
應選B.
點評:此題主要考察實數(shù)的運算能力,解決此類題目的關鍵是熟記二次根式、三次根式和立方、平方的運算法則.開平方和開立方分別和平方和立方互為逆運算.立方根的性質:任何數(shù)都有立方根,①正數(shù)的立方根是正數(shù),②負數(shù)的立方根是負數(shù),③0的立方根是0.
3.用代數(shù)式表示:“a,b兩數(shù)的平方和與a,b乘積的差〞,正確的是()
A.a2+b2﹣abB.(a+b)2﹣abC.a2b2﹣abD.(a2+b2)ab
考點:列代數(shù)式.
分析:先求得a,b兩數(shù)的平方和為a2+b2,再減去a,b乘積列式得出答案即可.
解答:解:“a,b兩數(shù)的平方和與a,b乘積的差〞,列示為a2+b2﹣ab.
應選:A.
點評:此題考察列代數(shù)式,找出題目蘊含的數(shù)量關系是解決問題的關鍵.
4.據(jù)統(tǒng)計,2023年我國用義務教育經費支持了13940000名農民工隨遷子女在城市里接受義務教育,這個數(shù)字用科學計數(shù)法可表示為()
A.1.394×107B.13.94×107C.1.394×106D.13.94×105
考點:科學記數(shù)法—表示較大的數(shù).
分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)一致.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).
解答:解:13940000=1.394×107,
應選:A.
點評:此題考察科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.
5.若﹣2am﹣1b2與5abn可以合并成一項,則m+n的值是()
A.1B.2C.3D.4
考點:合并同類項.
分析:根據(jù)可以合并,可得同類項,根據(jù)同類項是字母一致且一致字母的指數(shù)也一致,可得m、n的值,根據(jù)有理數(shù)的加法,可得答案.
解答:解:由﹣2am﹣1b2與5abn可以合并成一項,得
m﹣1=1,n=2.
解得m=2,n=2.
m+n=2+2=4,
應選:D.
點評:此題考察了合并同類項,利用了同類項得出m、n的值是解題關鍵.
6.如圖,A是直線l外一點,點B、C、E、D在直線l上,且AD⊥l,D為垂足,假如量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,點A到直線l的距離是()
A.13cmB.8cmC.7cmD.6cm
考點:點到直線的距離.
分析:根據(jù)點到直線的距離是點與直線上垂足間線段的長,可得答案.
解答:解:點A到直線l的距離是AD的長,故點A到直線l的距離是6cm,
應選:D.
點評:此題考察了點到直線的距離,點到直線的距離是點與直線上垂足間線段的長.
7.以下式子變形正確的是()
A.﹣(a﹣1)=﹣a﹣1B.3a﹣5a=﹣2aC.2(a+b)=2a+bD.|π﹣3|=3﹣π
考點:合并同類項;絕對值;去括號與添括號.
專題:常規(guī)題型.
分析:根據(jù)去括號與添括號的法則以及合并同類項的定義對各選項依次進行判斷即可解答.
解答:解:A、﹣(a﹣1)=﹣a+1,故本選項錯誤;
B、3a﹣5a=﹣2a,故本選項正確;
C、2(a+b)=2a+2b,故本選項錯誤;
D、|π﹣3|=π﹣3,故本選項錯誤.
應選B.
點評:此題考察去括號的方法:去括號時,運用乘法的分派律,先把括號前的數(shù)字與括號里各項相乘,再運用括號前是〞+“,去括號后,括號里的各項都不改變符號;括號前是〞﹣“,去括號后,括號里的各項都改變符號.運用這一法則去掉括號.同時要注意把握合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變.
8.若有理數(shù)m在數(shù)軸上對應的點為M,且滿足m<1<﹣m,則以下數(shù)軸表示正確的是()
A.B.C.D.
考點:數(shù)軸;相反數(shù);有理數(shù)大小對比.
分析:根據(jù)m<1<﹣m,求出m的取值范圍,進而確定M的位置即可.
解答:解:∵m<1<﹣m,
∴,
解得:m<﹣1.
應選:A.
點評:此題主要考察了不等式組的解法以及利用數(shù)軸確定點的位置,根據(jù)已知得出m的取值范圍是解題關鍵.
9.以下說法:①兩點確定一條直線;②射線AB和射線BA是同一條射線;③相等的角是對頂角;④三角形任意兩邊和大于第三邊的理由是兩點之間線段最短.正確的是()
A.①③④B.①②④C.①④D.②③④
考點:三角形三邊關系;直線、射線、線段;直線的性質:兩點確定一條直線;對頂角、鄰補角.
分析:利用確定直線的條件、射線的定義、對頂角的性質、三角形的三邊關系分別判斷后即可確定正確的選項.
解答:解:①兩點確定一條直線,正確;
②射線AB和射線BA是同一條射線,錯誤;
③相等的角是對頂角,錯誤;
④三角形任意兩邊和大于第三邊的理由是兩點之間線段最短,正確,
應選C.
點評:此題考察了確定直線的條件、射線的定義、對頂角的性質、三角形的三邊關系,屬于基礎知識,對比簡單.
10.已知線段AB=8cm,在直線AB上有一點C,且BC=4cm,點M是線段AC的中點,則線段AM的長為()
A.2cmB.4cmC.2cm或6cmD.4cm或6cm
考點:兩點間的距離.
分析:分類探討:點C在線段AB上,點C在線段BC的延長線上,根據(jù)線段的和差,可得AC的長,根據(jù)線段中點的性質,可得AM的長.
解答:解:當點C在線段AB上時,由線段的和差,得AC=AB﹣BC=8﹣4=4(cm),
由線段中點的性質,得AM=AC=×4=2(cm);
點C在線段BC的延長線上,由線段的和差,得AC=AB+BC=8+4=12(cm),
由線段中點的性質,得AM=AC=×12=6(cm);
應選:C.
點評:此題考察了兩點間的距離,利用了線段的和差,線段中點的性質.
二.認真填一填
11.若∠1=40°50′,則∠1的余角為49°10′,∠1的補角為139°10′.
考點:余角和補角;度分秒的換算.
分析:根據(jù)余角的定義求出90°﹣∠1°,即可得出答案,根據(jù)補角的定義求出180°﹣∠1,即可得出答案.
解答:解:∵∠1=40°50′,
∴∠1的余角為90°﹣∠1=49°10′,
∠1的補角為180°﹣∠1=139°10′,
故答案為:49°10′,139°10′.
點評:此題考察了余角和補角的應用,注意:∠1是的余角是90°﹣∠1,補角是180°﹣∠1.
12.在實數(shù),,0,,,﹣1.414,0.131131113…(兩個“3〞之間依次多一個“1〞),﹣中,其中無理數(shù)是,,0.131131113…(兩個“3〞之間依次多一個“1〞).
考點:無理數(shù).
分析:無理數(shù)是指無限不循環(huán)小數(shù),根據(jù)無理數(shù)的定義判斷即可.
解答:解:無理數(shù)有,,0.131131113…(兩個“3〞之間依次多一個“1〞),
故答案為:,,0.131131113…(兩個“3〞之間依次多一個“1〞).
點評:此題考察了對無理數(shù)的定義的應用,注意:無理數(shù)包括三方面的數(shù):①含π的,②開方開不盡的根式,③一些有規(guī)律的數(shù).
13.(關于)x的方程3x+2a=6的解是a﹣1,則a的值是.
考點:一元一次方程的解.
分析:把x=a﹣1代入方程計算即可求出a的值.
解答:解:把x=a﹣1代入方程得:3a﹣3+2a=6,
解得:a=,
故答案為:.
點評:此題考察了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.
14.假如a﹣3b=6,那么代數(shù)式5﹣3a+9b的值是﹣13.
考點:代數(shù)式求值.
分析:將原式提取公因式,進而將已知代入求出即可.
解答:解:∵a﹣3b=6,
∴5﹣3a+9b=5﹣3(a﹣3b)=5﹣3×6=﹣13.
故答案為:﹣13.
點評:此題主要考察了代數(shù)式求值,正確應用已知得出是解題關鍵.
15.若當x=3時,代數(shù)式(3x+4+m)與2﹣mx的值相等,則m=﹣.
考點:解一元一次方程.
專題:計算題.
分析:把x=3代入兩代數(shù)式,使其值相等求出m的值即可.
解答:解:把x=3代入得:(13+m)=2﹣m,
去分母得:4(13+m)=28﹣21m,
去括號得:42+4m=28﹣21m,
移項合并得:25m=﹣14,
解得:m=﹣,
故答案為:﹣
點評:此題考察了解一元一次方程,其步驟為:去分母,去括號,移項合并,把未知數(shù)系數(shù)化為1,求出解.
16.下面每個正方形中的五個數(shù)之間都有一致的規(guī)律,根據(jù)這種規(guī)律,則第4個正方形中間數(shù)字m為29,第n個正方形的中間數(shù)字為8n﹣3.(用含n的代數(shù)式表示)
考點:規(guī)律型:圖形的變化類.
分析:由前三個正方形可知:右上和右下兩個數(shù)的和等于中間的數(shù),根據(jù)這一規(guī)律即可求出m的值;
首先求得第n個的最小數(shù)為1+4(n﹣1)=4n﹣3,其它三個分別為4n﹣2,4n﹣1,4n,由以上規(guī)律求得答案即可.
解答:解:如圖,
因此第4個正方形中間數(shù)字m為14+15=29,
第n個正方形的中間數(shù)字為4n﹣2+4n﹣1=8n﹣3.
故答案為:29,8n﹣3.
點評:此題考察圖形的變化規(guī)律,通過觀測,分析、歸納發(fā)現(xiàn)數(shù)字之間的運算規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.
三.全面答一答
17.計算
(1)(﹣2.25)﹣(+)+(﹣)﹣(﹣0.125)
(2)﹣32+5×(﹣6)﹣(﹣4)2÷(﹣2)
考點:有理數(shù)的混合運算.
分析:(1)原式利用減法法則變形,計算即可得到結果;
(2)原式先計算乘方運算,再計算乘除運算,最終算加減運算即可得到結果.
解答:解:(1)原式=(﹣2.25﹣0.75)+(﹣0.625+0.125)=﹣3﹣0.5=﹣3.5;
(2)原=﹣9﹣30+8=﹣31.
點評:此題考察了有理數(shù)的混合運算,熟練把握運算法則是解此題的關鍵.
18.解方程
(1)4x﹣2=3x﹣
(2)=﹣2.
考點:解一元一次方程.
專題:計算題.
分析:(1)方程移項合并,把x系數(shù)化為1,即可求出解;
(2)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.
解答:解:(1)方程移項合并得:x=2﹣;
(2)去分母得:4x+2=1﹣2x﹣12,
移項合并得:6x=﹣13,
解得:x=﹣.
點評:此題考察了解一元一次方程,其步驟為:去分母,去括號,移項合并,把x系數(shù)化為1,求出解.
19.如圖,O在直線AC上,OD是∠AOB的平分線,OE在∠BOC內.
(1)若OE是∠BOC的平分線,則有OD⊥OE,試說明理由;
(2)若∠BOE=∠EOC,∠DOE=72°,求∠EOC的度數(shù).
考點:角平分線的定義.
分析:(1)根據(jù)角平分線的定義可以求得∠DOE=∠AOC=90°;
(2)設∠EOB=x度,∠EOC=2x度,把角用未知數(shù)表示出來,建立x的方程,用代數(shù)方法解幾何問題是一種常用的方法.
解答:解:(1)如圖,∵OD是∠AOB的平分線,OE是∠BOC的平分線,
∴∠BOD=∠AOB,∠BOE=∠BOC,
∴∠DOE=(∠AOB+∠BOC)=∠AOC=90°,即OD⊥OE;
(2)設∠EOB=x,則∠EOC=2x,
則∠BOD=(180°﹣3x),
則∠BOE+∠BOD=∠DOE,
即x+(180°﹣3x)=72°,
解得x=36°,
故∠EOC=2x=72°.
點評:此題考察了角平分線的定義.設未知數(shù),把角用未知數(shù)表示出來,列方程組,求解.角平分線的運用,為解此題起了一個過渡的作用.
20.在同一平面內有n條直線,當n=1時,如圖①,一條直線將一個平面分成兩個部分;當n=2時,如圖②,兩條直線將一個平面最多分成四個部分.
(1)在作圖區(qū)分別畫出當n=3時,三條直線將一個平面分成最少部分和最多部分的狀況;
(2)當n=4時,請寫出四條直線將一個平面分成最少部分的個數(shù)和最多部分的個數(shù);
(3)若n條直線將一個平面最多分成an個部分,(n+1)條直線將一個平面最多分成an+1個部分,請寫出an,an+1,n之間的關系式.
考點:規(guī)律型:圖形的變化類.
分析:(1)一條直線可以把平面分成兩部分,兩條直線最多可以把平面分成4部分,三條直線最少可以把平面分成4部分,最多可以把平面分成7部分,由此畫出圖形即可;
(2)四條直線最少可以把平面分成5部分,最多可以把平面分成11部分;
(3)可以發(fā)現(xiàn),兩條直線時多了2部分,三條直線比原來多了3部分,四條直線時比原來多了4部分,…,n條時比原來多了n部分..
解答:解:(1)如圖,
(2)四條直線最少可以把平面分成5部分,最多可以把平面分成11部分;
(3)當n=1時,分成2部分,
當n=2時,分成4=2+2部分,
當n=3時,分成7=4+3部分,
當n=4時,分成11=7+4部分,
…
可以發(fā)現(xiàn),有幾條線段,則分成的部分比前一種狀況多幾部分,
an、an+1、n之間的關系是:an+1=an+(n+1).
點評:此題考察圖形的變化規(guī)律,找出圖形之間的聯(lián)系,得出數(shù)字的運算規(guī)律,利用規(guī)律解決問題.
21.在一條東西走向的馬路旁,有青少年宮、學校、商場、醫(yī)院四家公共場所.已知青少年宮在學校東500m處,商場在學校西300m處,醫(yī)院在學校東600m處.若將馬路近似地看作一條直線,以學校為原點,向東方向為正方向,用1個單位長度表示100m.
(1)請畫一條數(shù)軸并在數(shù)軸上表示出四家公共場所的位置;
(2)列式計算青少年宮與商場之間的距離;
(3)若小新家也位于這條馬路旁,在青少年宮的西邊,且到商場與青少年宮的距離之和等于到醫(yī)院的距離,試求小新家與學校的距離.
考點:數(shù)軸.
分析:(1)規(guī)定向東為正,單位長度是以100米為1個單位,根據(jù)青少年宮、學校、商場、醫(yī)院的位置畫出數(shù)軸即可,
(2)根據(jù)數(shù)軸上兩點之間的距離是表示這兩點的數(shù)的差的絕對值求值即可.
(3)由題意可得小新家到醫(yī)院的距離為800m,設小新家在數(shù)軸上為xm,列出方程求出x,即可確定小新家與學校的距離.
解答:解:(1)如圖,
(2)青少年宮與商場之間的距離|500﹣(﹣300)|=800m,
(3)①∵小新家在青少年宮的西邊,且到商場與青少年宮的距離之和等于到醫(yī)院的距離,
∴小新家到醫(yī)院的距離為800m,
設小新家在數(shù)軸上為xm,則600﹣x=800,解得x=﹣200m,
∴小新家與學校的距離為200m.
②當小新家在商場的西邊時,設小新家在數(shù)軸上為xm,則﹣300﹣x+500﹣x=600﹣x,解得x=﹣400m
∴小新家與學校的距離為400m.
點評:此題主要考察正負數(shù)在實際(生活)中的應用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.
22.圖1為全體奇數(shù)排成的數(shù)表,用十字框任意框出5個數(shù),記框內中間這個數(shù)為a(如圖2).
(1)請用含a的代數(shù)式表示框內的其余4個數(shù);
(2)框內的5個數(shù)之和能等于2023,2023嗎?若不能,請說明理由;若能,請求出這5個數(shù)中最小的一個數(shù),并寫出最小的這個數(shù)在圖1數(shù)表中的位置.(自上往下第幾行,自左往右的第幾個)
考點:一元一次方程的應用.
分析:(1)上下相鄰的數(shù)相差18,左右相鄰的數(shù)相差是2,所以可用a表示;
(2)根據(jù)等量關系:框內的5個數(shù)之和能等于2023,2023,分別列方程分析求解.
解答:解:(1)設中間的數(shù)是a,則a的上一個數(shù)為a﹣18,下一個數(shù)為a+18,前一個數(shù)為a﹣2,后一個數(shù)為a+2;
(2)設中間的數(shù)是a,依題意有
5a=2023,
a=403,符合題意,
這5個數(shù)中最小的一個數(shù)是a﹣18=403﹣18=385,
2n﹣1=385,解得n=193,
193÷9=21…4,
最小的這個數(shù)在圖1數(shù)表中的位置第22排第4列.
5a=2023,
a=404,
404是偶數(shù),不合題意舍去;
即十字框中的五數(shù)之和不能等于2023,能等于2023.
點評:此題考察一元一次方程的應用,關鍵是看到表格中中間位置的數(shù)和四周數(shù)的關系,最終可列出方程求解.
23.某超市在“元旦〞促銷期間規(guī)定:超市內所有商品按標價的7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區(qū)改造意向合同范本
- 掛靠設計資質合同范本
- 共同代理銷售合同范本
- 星巴克加盟合同范本
- 楊朔《海市》閱讀答案
- 2025【玻璃鋼墻面制作合同范本】墻面漆色彩效果圖
- 2025標準個人汽車租賃合同范本(常用版)
- 手繪風格畢業(yè)答辯與企業(yè)匯報精美模板
- 高中地理第四章同步導學案:工業(yè)的區(qū)位選擇
- 語言學概論知到課后答案智慧樹章節(jié)測試答案2025年春臨沂大學
- 國際壓力性損傷-潰瘍預防和治療臨床指南(2025年版)解讀課件
- 數(shù)學全等三角形課件++2024-2025學年北師大版七年級數(shù)學下冊
- LBT 235-2022綠色食品設施甜櫻桃生產操作規(guī)程
- 英語-北京市朝陽區(qū)2025年高三年級第二學期質量檢測一(朝陽一模)試題和答案
- 編織老師考試試題及答案
- 2025年03月重慶市涪陵區(qū)新妙鎮(zhèn)選聘本土人才1人筆試歷年參考題庫考點剖析附解題思路及答案詳解
- 2025年國家電投集團內蒙古能源有限公司招聘筆試參考題庫含答案解析
- 抖音運營考核試題及答案
- 2025年河南醫(yī)學高等??茖W校單招職業(yè)適應性考試題庫含答案
- 腫瘤化學療法的護理
- 河南省鄭州市河南測繪職業(yè)學院2024年4月單招考試語文試卷
評論
0/150
提交評論