




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.2.是虛數單位,復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.很多關于整數規律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以;如此循環,最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.4.如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區環境基礎設施投資額逐年增加;B.2011年該地區環境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區2019年的環境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區2019的環境基礎設施投資額為256.5億元.5.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.6.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.7.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數列,則此雙曲線的離心率為()A. B. C. D.8.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.39.要排出高三某班一天中,語文、數學、英語各節,自習課節的功課表,其中上午節,下午節,若要求節語文課必須相鄰且節數學課也必須相鄰(注意:上午第五節和下午第一節不算相鄰),則不同的排法種數是()A. B. C. D.10.設為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.11.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.12.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或二、填空題:本題共4小題,每小題5分,共20分。13.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優秀率為70%,女生成績的優秀率為50%;乙校男生成績的優秀率為60%,女生成績的優秀率為40%.對于此次測試,給出下列三個結論:①甲校學生成績的優秀率大于乙校學生成績的優秀率;②甲、乙兩校所有男生成績的優秀率大于甲、乙兩校所有女生成績的優秀率;③甲校學生成績的優秀率與甲、乙兩校所有學生成績的優秀率的大小關系不確定.其中,所有正確結論的序號是____________.14.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.15.已知函數f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.16.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)棉花的纖維長度是評價棉花質量的重要指標,某農科所的專家在土壤環境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取21根棉花纖維進行統計,結果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數)34454乙地(根數)112116(1)由以上統計數據,填寫下面列聯表,并判斷能否在犯錯誤概率不超過1.125的前提下認為“纖維長度與土壤環境有關系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數為,求的分布列及數學期望.18.(12分)設的內角的對邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.19.(12分)2019年9月26日,攜程網發布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優秀導游.經驗表明,如果公司的優秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:分組頻數(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業務培訓,設來自甲公司的人數為,求的分布列及數學期望.20.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;(Ⅲ)記表示學生的考核成績在區間的概率,根據以往培訓數據,規定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.21.(12分)已知在等比數列中,.(1)求數列的通項公式;(2)若,求數列前項的和.22.(10分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.2、D【解析】
求出復數在復平面內對應的點的坐標,即可得出結論.【詳解】復數在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數對應的點的位置的判斷,屬于基礎題.3、B【解析】
根據程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數成立,則,;不成立,是偶數不成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;成立,跳出循環,輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.4、D【解析】
根據圖像所給的數據,對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.5、C【解析】
設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.6、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數量積的運算性質、向量垂直與數量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.7、B【解析】
求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.8、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.9、C【解析】
根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節語文課必須相鄰且節數學課也必須相鄰,將節語文課和節數學課分別捆綁,然后在剩余節課中選節到上午,由于節英語課不加以區分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節語文課不加以區分,節數學課不加以區分,節英語課也不加以區分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.10、C【解析】
設,,,由可得,利用定義將用表示即可.【詳解】設,,,由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問題,考查學生等價轉化的能力,是一道容易題.11、D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.12、C【解析】
先根據弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現了到焦點的距離時,一般考慮拋物線的定義.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】
根據局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優秀率均大于女生成績的優秀率,故甲、乙兩校所有男生成績的優秀率大于甲、乙兩校所有女生成績的優秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優秀率與甲、乙兩校所有學生成績的優秀率的大小關系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.14、【解析】
設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.15、0【解析】
由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯立①②解得:..故答案為:0.【點睛】本題考查導數的幾何意義,屬于基礎題.16、【解析】
化簡得到,,根據余弦定理和均值不等式得到,根據面積公式計算得到答案.【詳解】,即,,故.根據余弦定理:,即.當時等號成立,故.故答案為:.【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學生的綜合應用能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在犯錯誤概率不超過的前提下認為“纖維長度與土壤環境有關系”.(2)見解析【解析】試題分析:(1)可以根據所給表格填出列聯表,利用列聯表求出,結合所給數據,應用獨立性檢驗知識可作出判斷;(2)寫出的所有可能取值,并求出對應的概率,可列出分布列并進一步求出的數學期望.試題解析:(Ⅰ)根據已知數據得到如下列聯表:甲地乙地總計長纖維91625短纖維11415總計212141根據列聯表中的數據,可得所以,在犯錯誤概率不超過的前提下認為“纖維長度與土壤環境有關系”.(Ⅱ)由表可知在8根中乙地“短纖維”的根數為,的可能取值為:1,1,2,3,,,,.∴的分布列為:1123∴.18、(1)(2)【解析】
(1)利用正弦定理化簡已知條件,由此求得的值,進而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達式,進而求得的取值范圍.【詳解】(1)由題設知,,即,所以,即,又所以.(2)由題設知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.19、(1),乙公司影響度高;(2)見解析,【解析】
(1)利用各小矩形的面積和等于1可得a,由導游人數為40人可得b,再由總收人不低于40可計算出優秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數的值可能為1,2,3,再計算出相應取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數分布表中知:,解得.所以,甲公司的導游優秀率為:,乙公司的導游優秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數據處理與數學運算的能力,是一道中檔題.20
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年應對紡織供應鏈危機的方法試題及答案
- 2024年聚焦廣告設計師考試趨勢及發展試題及答案
- 口岸營商環境試題及答案
- 城管督察面試題目及答案
- 樹立品牌形象的廣告創意策略分析試題及答案
- 廣告設計師考試2024年品牌設計趨勢試題及答案
- 2024年廣告設計師目標群體分析試題及答案
- 廣告元素的功能與分析試題及答案
- 2024年廣告設計師項目策略試題及答案
- 2024年紡織品設計師知識回顧試題及答案
- 2025屆江蘇省南通市高三下學期3月二?;瘜W試題(含答案)
- 《尼爾斯騎鵝旅行記》讀書分享課件
- 邏輯學導論 第4章 謬誤
- 無錫地鐵線網文旅融合一體化發展策略研究
- 8S管理介紹課件
- 夜市現場管理制度內容
- 掛名股東免責協議書(2025年)
- 雨季冬季施工及臺風、炎熱氣候條件下施工措施
- 武進經濟發展集團筆試
- 2024年10月廣東省高等教育自學考試00055企業會計學試卷及答案
- 2024年四川省公務員錄用考試《行測》真題及答案解析
評論
0/150
提交評論