




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,則的值為()A. B. C. D.22.已知純虛數滿足,其中為虛數單位,則實數等于()A. B.1 C. D.23.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或4.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數的值為()A.1 B.2 C.-1 D.-25.已知函數,則不等式的解集是()A. B. C. D.6.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數學家和物理學家,他和高斯、牛頓并列被稱為世界三大數學家.據說,他自己覺得最為滿意的一個數學發現就是“圓柱內切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.7.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.8.若的展開式中的系數之和為,則實數的值為()A. B. C. D.19.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.410.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.811.執行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.12.設集合則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量服從正態分布,若,則_________.14.棱長為的正四面體與正三棱錐的底面重合,若由它們構成的多面體的頂點均在一球的球面上,則正三棱錐的內切球半徑為______.15.西周初數學家商高在公元前1000年發現勾股定理的一個特例:勾三,股四,弦五.此發現早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數稱為勾股數.現從3,4,5,6,7,8,9,10,11,12,13這11個數中隨機抽取3個數,則這3個數能構成勾股數的概率為__________.16.已知復數z1=1﹣2i,z2=a+2i(其中i是虛數單位,a∈R),若z1?z2是純虛數,則a的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.18.(12分)某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.19.(12分)為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區,在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區,共有50家企事業單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區采用的抽樣方法;(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;(3)以該小區的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82820.(12分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.21.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.22.(10分)已知等差數列的前n項和為,等比數列的前n項和為,且,,.(1)求數列與的通項公式;(2)求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數的除法運算與求復數的模,屬于基礎題.2、B【解析】
先根據復數的除法表示出,然后根據是純虛數求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數,所以,所以.故選:B.【點睛】本題考查復數的除法運算以及根據復數是純虛數求解參數值,難度較易.若復數為純虛數,則有.3、A【解析】
根據題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.4、D【解析】
由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.5、B【解析】
由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.6、C【解析】
設球的半徑為R,根據組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數學史了解,屬于基礎題.7、D【解析】
根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規律以及其有關性質,基礎題.8、B【解析】
由,進而分別求出展開式中的系數及展開式中的系數,令二者之和等于,可求出實數的值.【詳解】由,則展開式中的系數為,展開式中的系數為,二者的系數之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.9、C【解析】
畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.10、A【解析】
依題意可得,再根據離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.11、C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題12、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、0.4【解析】
因為隨機變量ζ服從正態分布,利用正態曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態分布所以正態曲線關于對稱,所.【點睛】本題考查了正態分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.14、【解析】
由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側棱長,可得正三棱錐的三條側棱兩兩相互垂直,進而求出體積與表面積,設內切圓的半徑,由等體積,求出內切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設三角形的外接圓的半徑為,則,解得,設外接球的半徑為,則可得,即,解得,設正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側棱兩兩相互垂直,所以,設內切球的半徑為,,即解得:.故答案為:.【點睛】本題考查多面體與球的內切和外接問題,考查轉化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.15、【解析】
由組合數結合古典概型求解即可【詳解】從11個數中隨機抽取3個數有種不同的方法,其中能構成勾股數的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數學文化,考查組合問題,數據處理能力和應用意識.16、-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數,∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數的概念和運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,是,,,,;(2)【解析】
(1)根據是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標系,設,由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式求解.【詳解】(1)因為是球的直徑,則,又平面,∴,.∴平面,∴,∴平面.根據證明可知,四面體是鱉臑.它的每個面的直角分別是,,,.(2)如圖,以A為原點,,,所在直線為x,y,z軸建立直角坐標系,則,,,,.M為中點,從而.所以,設,則.由,得.由得,即.所以.設平面的一個法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【點睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18、(1),(2)側面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導分析,得在時取得極大值,也是最大值.試題解析:(1)設交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區間上單調遞增,在區間上單調遞減,所以在時取得極大值,也是最大值;所以當時,側面積取得最大值,此時等腰三角形的腰長答:側面積取得最大值時,等腰三角形的腰的長度為.19、(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將列聯表中的數據代入公式計算得所以有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”.(3)以頻率作為概率,隨機選擇1家個體經營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計算可得的分布列為:0123【點睛】本題考查了運用數學模型解答實際生活問題,運用合理的抽樣方法,計算以及數據的分布列和數學期望,需要正確運用公式進行求解,本題屬于常考題型,需要掌握解題方法.20、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼材加工安裝合同范本
- 合伙創業分紅合同范本
- 吉林省吉林市吉林高新技術產業開發區2024-2025學年八年級上學期12月期末考試數學試卷(含解析)
- 雕塑進貨出售合同范本
- 砂石土方運輸合同范本
- 豆粨采購合同范本
- 《2025租賃合同終極大典》
- 出售球拍合同范本
- 山東省日照市2025屆高三下學期一模試題 政治 無答案
- 2024年揚州市廣陵區教育系統事業單位招聘教師真題
- 2025-2030年中國CAE軟件行業市場行情監測及發展前景研判報告
- 2025江西南昌市江銅產融社會招聘1人筆試參考題庫附帶答案詳解
- (二統)昆明市2025屆“三診一模”高三復習教學質量檢測地理試卷(含答案)
- Unit 3 Keep Fit Section A 2a-2e 教學設計 2024-2025學年人教版(2024)七年級英語下冊
- 2025徽縣輔警考試題庫
- (一模)2025年廣東省高三高考模擬測試 (一) 卷數學試卷(含官方答案)
- 腦心健康管理師的學習匯報
- 樹木移植合同范本
- 2025年開封大學單招職業技能測試題庫新版
- 2025年張家界航空工業職業技術學院單招職業技能測試題庫及參考答案
- 財政投資評審咨詢服務預算和結算評審項目投標文件(技術方案)
評論
0/150
提交評論