第二章 溶液及相平衡(葛)_第1頁
第二章 溶液及相平衡(葛)_第2頁
第二章 溶液及相平衡(葛)_第3頁
第二章 溶液及相平衡(葛)_第4頁
第二章 溶液及相平衡(葛)_第5頁
已閱讀5頁,還剩131頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第二章溶液與相平衡前言一、溶液組成的表示方法B表示溶液中的任一組分。B的濃度(cB):B的物質的量除以溶液的體積。單位為mol·L-1。溶質B的質量摩爾濃度(bB):溶液中溶質B的物質的量除以溶劑的質量。單位為mol·kg-1或mmol·kg-1。溶液組成的表示方法(續(xù)上〕B的物質的量分數(shù)或摩爾分數(shù)(xB或yB):B的物質的量除以溶液的物質的量。xB(或yB)=nB/nB

xB(或yB)=1B的質量分數(shù)(wB):B的質量除以溶液的質量。wB=mB/mB

w

B=1練習在20℃時將50g乙醇溶于450g水中形成密度為981.9kg/m3的溶液,計算(1)乙醇的濃度;(2)乙醇的質量摩爾濃度;(3)乙醇的物質的量分數(shù);(4)乙醇的質量分數(shù)。M(乙醇)=46.069M(水)=18.015c(乙醇)練習在20℃時將50g乙醇溶于450g水中形成密度為981.9kg/m3的溶液,計算(1)乙醇的濃度;(2)乙醇的質量摩爾濃度;(3)乙醇的物質的量分數(shù);(4)乙醇的質量分數(shù)。M(乙醇)=46.069M(水)=18.015b(乙醇)練習在20℃時將50g乙醇溶于450g水中形成密度為981.9kg/m3的溶液,計算(1)乙醇的濃度;(2)乙醇的質量摩爾濃度;(3)乙醇的物質的量分數(shù);(4)乙醇的質量分數(shù)。M(乙醇)=46.069M(水)=18.015x(乙醇)二、本章講述的主要內容溶液與相平衡的局部規(guī)律拉烏爾定律、亨利定律、分配定律溶液與相平衡的普遍規(guī)律

相律描述溶液與相平衡的圖相圖第一節(jié)溶液的基本定律一、拉烏爾定律

(Raoult'sLaw,1887)液相氣相A的蒸汽壓pA*A的蒸汽壓pA一、拉烏爾定律

(Raoult‘sLaw,1887,法國)內容:在稀溶液中溶劑A的蒸汽壓pA等于同溫度下純溶劑的蒸汽壓pA

*乘以溶劑的物質的量分數(shù)xA。一、拉烏爾定律

(Raoult'sLaw,1887)用公式表示作用:描述了溶質對溶劑飽和蒸氣壓的影響,用于計算稀溶液中溶劑蒸氣壓。說明1、只適應于稀溶液(和理想溶液)。所謂稀溶液是指溶劑的摩爾分數(shù)接近于1;2、且氣相遵循理想氣體定律;3、與溶質的種類無關;4、一般只適用于非電解質溶液,電解質溶液因為存在電離現(xiàn)象,溶質對溶劑蒸汽壓的影響要更復雜一些.微觀解釋1、由于溶質分子數(shù)目少,對混合體積、分子間作用力影響可忽略。2、根本原因是單位液面上溶劑分子數(shù)目減少。二、亨利定律

(Henry‘sLaw,1803,英國)作用:是關于氣體在液體中的溶解度的定律k-亨利常數(shù),決定于溫度、溶劑和溶質的性質。k的單位和數(shù)值由PB和xB的單位決定。亨利定律的內容在一定溫度下和平衡狀態(tài)下,氣體在液體中的溶解度xB(物質的量分數(shù))與該氣體的平衡壓力pB成正比。km和kx的關系: p=kxxB

=kxnB/(nA+nB) ≈kxnB/nA 當xB→0時 =kxMAnB/(nAMA) =(kxMA)nB/(nAMA) =(kxMA)nB/WA =(kxMA)mB =kmmB令 km=kxMA (4)若用物質的量濃度,則亨利定律為:

pB=kccB (5)kc:物質的量濃度為單位的亨利系數(shù)可以證明,對于稀溶液,不同濃度表示法的亨利系數(shù)kc與kx的關系為:

kC=kxMA/A (6)說明1.適應于稀溶液與低壓氣體。2.pB是溶液上方溶質B的分壓;若溶質為低壓混合氣體,總壓不大時,該定律對每種氣體分別成立;3.只有溶質在氣相和液相中存在形式相同時才成立。微觀解釋1、溶質B溶于溶劑A后,為A分子包圍,受力取決于A-B.2、溶解平衡時,B的平衡壓力取決于B的濃度。3、由于A-B分子間作用力不同于純液體B中B-B分子間作用力,使得亨利常數(shù)不同于B的飽和蒸汽壓。97℃,質量分數(shù)3%乙醇的水溶液上,蒸氣的總壓1atm,已知純水的蒸氣壓0.901atm.試計算在乙醇的摩爾分數(shù)為0.02的水溶液上,水和乙醇的蒸氣壓。溶液上方的總壓等于乙醇和水蒸汽分壓之和。水蒸汽分壓用拉烏爾定律表示。乙醇的分壓用亨利定律表示。由質量分數(shù)求摩爾分數(shù)。溫度一定,亨利常數(shù)一定。97℃,質量分數(shù)3%乙醇的水溶液上,蒸氣的總壓1atm,已知純水的蒸氣壓0.901atm.試計算在乙醇的摩爾分數(shù)為0.02的水溶液上,水和乙醇的蒸氣壓。4.拉烏爾定律是關于溶劑的作用定律;亨利定律是關于溶質的作用定律。說明三、分配定律作用:當一種物質同時溶解于兩種互不相溶的溶劑時,分配定律描述了該物質在這兩種溶劑中的溶解度的比例。內容:一種溶質在兩種互不相溶的溶劑中,溶解度之比在定溫下為常數(shù)。K=xB1/xB2分配定律的證明由亨利定律,p(CH4)=k1x(CH4,在油中)p(CH4)=k2x(CH4,在水中)k1x(CH4,在油中)=k2x(CH4,在水中)說明分配定律由亨利定律推導而來,因此,應用條件與亨利定律相同。

例題25℃時,在裝有苯和水的容器中,通入硫化氫氣體,平衡后,呈現(xiàn)水、苯、氣三相。已知:(1)25℃時,苯的飽和蒸汽壓為11.96kPa,水的飽和蒸汽壓為3.18kPa;(2)25℃時,當硫化氫分壓力為101.33kPa時,硫化氫在水中的溶解度為0.0184(摩爾分數(shù));(3)25℃時,硫化氫在水和苯中的分配系數(shù)為1.19.若平衡時,氣相中硫化氫分壓為506.63kPa,求(1)水相中硫化氫的物質的量分數(shù);(2)苯相中硫化氫的物質的量分數(shù)。例題P37(三定律求解)(1)氣相總壓力=p(H2S)+p(苯)+p(水);(2)求苯和水的摩爾分數(shù)=求H2S在苯和水中的摩爾分數(shù);(3)求H2S在苯和水中的亨利常數(shù);(4)因為分配系數(shù)已知,求其中之一即可;(5)由已知條件2求在H2S在水中的亨利常數(shù);(6)利用拉烏爾定律求溶劑在氣相中的分壓第二節(jié)相律相律是相平衡體系遵循的普遍規(guī)律,它說明了一個相平衡體系到底受多少個獨立變量的影響一、基本概念1.相與相數(shù)

相:體系中任何部分的物理性質和化學性質都相同,稱為一相。

相數(shù)(P):指體系中相的個數(shù)。說明:(1)一相中的任何部分物理性質和化學性質都相同(2)相的存在和物質的量的多少無關,也可以不連續(xù)存在

2、組分數(shù)組分:

指能從體系中分離出來且能獨立存在的每種化學物質。

組分數(shù)(C):

體系中組分的個數(shù)。

“獨立”的含義是指:(1)分離出來的化學物質能穩(wěn)定存在(2)這些物質之間是獨立的,不存某種關系如氨氣分解為氫氣和氮氣3、自由度數(shù)(F)強度性質:某些物質的性質的數(shù)值與所存在的物質的量無關,如壓力、溫度(、組成)。廣度性質:某些物質的性質的數(shù)值與所存在的物質的量有關,如體積。自由度數(shù):能維持相平衡體系中原有相數(shù)不變而可獨立改變的強度性質的變量(如溫度、壓力、組成)的數(shù)目。通過這些數(shù)目的強度性質,可以確定體系唯一的狀態(tài)。對“自由度數(shù)”的理解體系在不改變相的形態(tài)和數(shù)目時,為確定體系唯一的狀態(tài),可以獨立改變的強度性質的最大數(shù)目。4.總組成與相組成總組成:體系組成(體系確定,總組成確定);相組成:每一相的組成(隨體系狀態(tài)而變)。52A,12B4A,2B48A,10B4.總組成與相組成以甲烷在水中溶解為例說明:二、相律推導意義:表征自由度數(shù)(F)、相數(shù)(P)組分數(shù)(C)之間關系二、相律推導

相律可用統(tǒng)計歸納的方法推導(也可由熱力學直接推導)例子:1.活塞中的二氧化碳氣體。2.活塞中二氧化碳氣液共存。3.定溫、定平衡壓力下,氣體在液體中的溶解度一定……亨利定律4.活塞中放有氮、氧混合氣體例子:1.活塞中的二氧化碳氣體。2.活塞中二氧化碳氣液共存。C=1P=1F=2F=C-P+2C=1P=2F=1F=C-P+2例3的分析強度性質的變量有:T,P,x由于亨利系數(shù)與T一一對應由p=kx,已知兩參數(shù),可求第三參數(shù)。例子:3.定溫、定平衡壓力下,某氣體在液體中的溶解度取決于其平衡壓力……亨利定律C=2P=2F=2F=C-P+2對于例4的分析強度性質的變量有:T,p,p(N2),p(O2),y(N2),y(O2)已知T和p及其余一項,可求任意其余的三項例子:4.活塞中放有氮、氧混合氣體C=2P=1F=3F=C-P+2例1234組分數(shù)C1122相數(shù)P1

221

自由度數(shù)F2123C-P0-101

F=C-P+2

二、相律推導

相律可用統(tǒng)計歸納的方法推導(也可由熱力學直接推導)例子:1.活塞中的二氧化碳氣體。2.活塞中二氧化碳氣液共存。3.定溫、定平衡壓力下,氣體在液體中的溶解度一定……亨利定律4.活塞中放有氮、氧混合氣體F=C-P+2復習1、稀溶液的三定律復習2自由度數(shù)能維持相平衡體系中原有相數(shù)不變而可獨立改變的強度性質的變量(如溫度、壓力、組成)的數(shù)目。復習3、相律第三節(jié)相圖相圖定義用幾何圖形來描述多相體系的狀態(tài)隨溫度、壓力和組成等的變化而變化的關系圖,稱相圖或狀態(tài)圖。液相氣相動態(tài)平衡時,氣相和液相的數(shù)量不再改變一、蒸氣壓(Vapourpressure)

一定溫度下氣液達到平衡時氣相具有的壓力稱為該溫度下液體或固體的飽和蒸氣壓,簡稱蒸氣壓。1、概念一定溫度下,在一個巳抽真空的容器中放入液體或固體,則在液相或固相中具有足夠能量的分子不斷逸出界面,到達氣相,同時氣相的分子,由于熱運動也不斷碰撞界面回到液相或固相中來,最后雙方達到動平衡,液量或固相的數(shù)量不再改變,氣相的壓力也不再改變.這時的壓力就稱為該溫度下液體或固體的飽和蒸氣壓或簡稱蒸氣壓。

對“蒸汽壓”概念的理解液體的飽和蒸汽壓就是定溫下液體與其自身的蒸汽達到平衡時飽和蒸汽所產(chǎn)生的壓力。飽和蒸汽壓是強度性質的變量。2.蒸氣壓大小的影響因素-物質性質液體或固體分子間吸引力越大,飽和蒸氣壓越小。外加壓力越大,蒸汽壓越大。2.蒸氣壓大小的影響因素-外加壓力通入不溶于液體的N2液相氣相動態(tài)平衡時,氣相和液相的數(shù)量不再改變2.蒸氣壓大小的影響因素2.蒸氣壓大小的影響因素-溫度

溫度越高,蒸汽壓越大。

純物質的飽和蒸氣壓與溫度的關系可用克-克公式表達。二、克-克公式表示相平衡體系中溫度與平衡壓力的關系式;可在氣液、氣固平衡時求出不同溫度下物質的蒸汽壓。

1.Clapeyron(克拉貝龍)方程(1834)

說明1.由熱力學導出2.適用于純物質的任意兩相平衡體系3.H指物質相變化過程熱量的變化

吸熱時:為正值放熱時:為負值4.V物質的相變體積5.H與V對應于相同的相變方向,相同的物質的量。2、Clausius-Clapeyron(克-克)公式克-克公式的推導說明克-克公式的積分式適用于低壓條件下的氣-液或氣-固相平衡體系。使用克-克公式的積分式時體系溫度變化不大。H與V對應于相同的相變方向。發(fā)生相變的物質的摩爾數(shù)是1。3.克-克公式的應用已知H、T1、p1,求T=T2時的蒸氣壓p2,或者求p=p2時的沸點。(P72-7))例題:二乙基醚在正常沸點(100kPa下的沸點)34.6℃時氣化熱為285.1J/g,求壓力為98.7kPa時二乙基醚的沸點。T1=34.6+273.15T2=?P1=100kPaP2=98.7kPaΔH=285.1J/g=?J/molCH3CH20CH2CH33.克-克公式的應用已知一系列的點(T,p)i,求H。已知兩點,定積分式已知多個點,不定積分式,線性回歸

直線斜率例題:乙醇在293.2k和303.2k時的蒸汽壓各為5.86kPa與10.51kPa,求乙醇的摩爾氣化熱三、水的(一組分)相圖1.相圖的制備Fmax=1-Pmin+2=3-PminPmin=1主要反應不同狀態(tài)下(平衡)壓力與溫度的關系F=C-P+2表2-6水的相平衡數(shù)據(jù)溫度t/°C系統(tǒng)的飽和蒸氣壓p/kPa水=水蒸氣冰=水蒸氣平衡壓力p/kPa冰=水

0.1260.1910.2870.422

0.6102.3387.376101.3251554.4220660.1030.1650.2600.4140.610193.5×103156.0×103110.4×10359.8×103

0.610

-20-15-10-5

0.012040100200374水的相圖2.相圖討論(1)相區(qū)域、相線、三相點相區(qū)域相線三相點(0.0098℃,0.610kPa)(2)用相律解釋相圖F=C-P+2(3)用克-克公式解釋相線的變化趨勢(1)確定體系的狀態(tài)需要兩個變量(2)P=1,C=1,F=2(1)確定體系的狀態(tài)需要一個變量(2)P=2,C=1,F=1斜率水的相圖

l(水)

A

C

e

d

c

b

a

s(冰)

O

C′

B

Tpg(水蒸氣)2.相圖討論相區(qū)域相線三相點(0.0098℃,0.610kPa)三相點不同于冰點。我們通常所說的冰點(0°C)是在101.325kPa的壓力下,被空氣飽和的水的凝固點。而三相點是純凈水在它自己的蒸氣壓力下的凝固點。由于空氣溶解于水,使凝固點下降0.0023°C,而大氣壓的存在,使壓力由0.610kPa升為101.325kPa,又使凝固點下降0.0075°C。這樣,總共使冰點下降0.0098°C。國際規(guī)定,三相點為273.16K,即0.01

°C。

l(水)

A

C

e

d

c

b

a

s(冰)

O

C′

g(水蒸氣)

B

Tp水的相圖

l(水)

A

C

e

d

c

b

a

s(冰)

O

C′

B

Tpg(水蒸氣)2.相圖討論用相律解釋(1)確定體系的狀態(tài)需要兩個變量(2)P=1,C=1,F=2(1)確定體系的狀態(tài)需要一個變量(2)P=2,C=1,F=1水的相圖

l(水)

A

C

e

d

c

b

a

s(冰)

O

C′

B

Tpg(水蒸氣)2.相圖討論解釋相線變化趨勢用克-克公式解釋相線的變化趨勢1、OA線的趨勢假設水變?yōu)樗羝何鼰徇^程,H>0;過程中體積增加,V>0用克-克公式解釋相線的變化趨勢2、OC線的趨勢假設水變?yōu)楸悍艧徇^程,H<

0;過程中體積增大,V>04、二組分相圖4.1理想溶液與實際溶液4.2理想溶液的p-xy相圖4.3實際溶液的p-xy相圖4.4理想溶液的t-xy相圖4.5相態(tài)反轉現(xiàn)象(p-t相圖)(1)理想溶液定義一切物質在全部濃度范圍內都符合拉烏爾定律的溶液。假設有二組分(A、B)溶液:pA=pA*xApB=pB*xBp=pA+pB=pA*xA+pB*xB

p=pB*+(pA*

-pB*)xAxB=1-xA(1)理想溶液宏觀特征:構成溶液時無熱效應,mixH=0構成溶液時無體積變化,mixV=0

微觀特征:分子間的相互作用力不發(fā)生變化,fA-B=fA-A=fB-B分子的距離不發(fā)生變化理想溶液的混合過程同系物形成的溶液如苯-甲苯、正己烷-正庚烷同位素形成的溶液如CH3I-CH3I*理想溶液與理想氣體說明理想溶液p-x相圖:pA=pA*xApB=pB*xBp=pA+pB=pA*xA+pB*xB

p=pB*+(pA*

-pB*)xA(1)理想溶液直線截距直線斜率xB=1-xA01.00.60.40.20.8PA=pA*×xA×

xAppA*0.20.80.60.401.0xBPB=pB*×

xBp=pA+pB=pA*xA+pB*xB

=pB*+(pA*

-pB*)xABA摩爾分數(shù)坐標T一定摩爾分數(shù)坐標1、A和B表示純物質2、越靠近A,表示A的濃度越大;越遠離A,表示A的濃度越小。對B亦然。3、坐標中任何一點xA+xB=14、坐標中任何一點代表兩個組分的濃度XA=0.5XA=0.7XB=0.3(2)負偏差溶液定義p<p理想,pA<pA理想,pB<pB理想

原因:形成溶液發(fā)生締合分子間作用力變大,

fA-B>fA-A,fA-B>fB-B宏觀特征:放熱體積減少(3)正偏差溶液定義p>p理想,pA>pA理想,

pB>pB理想

原因:形成溶液發(fā)生解締合分子間作用力變小,fA-B<fA-A,fA-B<fB-B宏觀特征:吸熱體積增加2、理想溶液的p-xy相圖說明:(1)可由兩種途徑做出:實驗和理論推導(2)保持等溫對二組分體系應用相律Fmax=2-Pmin+2=4-Pmin=3

二組分相圖要用三維空間才能完整表示出來。固定其中一的一個強度變量,才能用二維平面繪圖。固定溫度,p-xy相圖固定壓力,t-xy相圖固定組成,t-p相圖1755075100125150P/kpa0.0C6H140.20.40.60.81.0C5H12xy液相線氣相線t=50℃二組分體系壓力與組成相圖(1)液相線方程(泡點線)pA=pA*xApB=pB*xBp=pA+PB

p=pA

*xA+pB*xB

xA+xB=1

p=pB*+(pA*

-pB*)xA

p=pA*+(pB*

-pA*)xB表示體系總壓力與液相組成關系溫度一定(2)氣相線方程(露點線)表示體系總壓力與氣相組成關系溫度一定(3)p-xy相圖的繪制方法示例:已知50℃時C5H12(A)的蒸氣壓為160.1kPa,C6H14(B)的蒸氣壓為53.30kPa,試做50℃時的C5H12-C6H14相圖。解:取xA=0.000,0.200,0.400,0.600,0.800,1.000,計算對應的y和p。

xA=0.2000p=pB*+(pA*

-pB*)xA=74.66kPayA=pA*xA/p=0.428pA*xA=yAp=pA或者直接用氣相方程計算。1755075125P/kpa0.0C6H140.20.40.60.81.0C5H12xy液相線氣相線1755075125P/kpa0.0C6H140.20.40.60.81.0C5H12xyT=50℃

液相區(qū)氣液兩相區(qū)氣相區(qū)液體氣泡液體氣體液相液滴氣體泡點線露點線1755075125P/kpa0.0C6H140.20.40.60.81.0C5H12xyT=50℃

C=2,P=1,F=3,由于T一定,故真實自由度(條件自由度)為2C=2,P=2,F=2,條件自由度為11755075125P/kpa0.0C6H140.20.40.60.81.0C5H12xyT=50℃

甲醇和乙醇所形成的溶液為理想溶液。20℃時,甲醇的飽和蒸汽壓為7.82kPa,乙醇的飽和蒸汽壓為5.94kPa。若平衡時乙醇的氣相組成y(C2H5OH)=0.300,求:(1)體系的總壓力和甲醇、乙醇的分壓力;(2)甲醇在液相中的物質的量分數(shù)。思考題p=pB*+(pA*-pB*)xA

yA=pA*xA/p復習1755075125P/kpa0.0C6H140.20.40.60.81.0C5H12xy杠桿規(guī)則xAzAyAaoob例題取6molC5H12(A)和4molC6H14(B)構成溶液,問當壓力為103.96kPa時,氣液相中物質的數(shù)量是多少?解:zA=0.6p=103.96kPa,oa=7.0mm,ob=6.0mmn液·oa=n氣·obn液+n氣=10n液=4.6mol,n氣=5.4mol思考題已知50℃時C5H12(A)的蒸氣壓為160.1kPa,C6H14(B)的蒸氣壓為53.30kPa。50℃時取6molC5H12和4molC6H14構成溶液,問當壓力為103.96kPa時,氣液相中物質的數(shù)量是多少?解:思考題練習題在活塞中放等物質量的苯和甲苯,在90℃下保持溫度不變,減小壓力,問:(1)在那個壓力下開始有蒸汽產(chǎn)生,組成是多少?(2)在那個壓力下全部氣化完畢?最后一滴液體組成是多少?(3)在那個壓力下氣液相物質的量相同?氣相和液相組成是多少?1755075125P/kpa0.0甲苯0.20.40.60.81.0苯xyzAxAyA實際溶液的p-xy相圖3、理想溶液的t-xy相圖作用:用來描述等壓條件下溫度與相組成的關系。制作方法:

由一系列的p-xy相圖得到ABPt1t2t3ABxyP=p1tP=p1t2t1t3氣相區(qū)氣液兩相區(qū)液相區(qū)溫度為t3,平衡壓力為p1時的液相組成溫度為t3,平衡壓力為p1時的氣相組成4、理想溶液的p-t相圖著重研究兩個問題:(1)對于某一確定的體系,在泡點和露點時壓力與溫度之間的對應關系;(2)對于某一確定的體系,判斷p、T下體系的相態(tài)。154156158160162t/℃3.253.504.504.254.003.75p/MPa液體氣液共存蒸汽EDCBApmaxtmax泡點線露點線0.001.002.003.004.000.000.200.400.600.801.00C3H8xyC5H12P/MPa125℃

150℃

90℃

6080100120140160tC5的總組成為0.607p-xy作p-ttc=96.8℃,pc=4.26MPa154156158160162t/℃3.253.504.504.254.003.75p/MPa液體氣液共存蒸汽EDCBApmaxtmax泡點線露點線臨界點與組成的關系(1)混合物的臨界溫度都居于兩個純組分的臨界溫度之間;(2)圖中虛線是不同比例的甲烷和正己烷混合物臨界點的軌跡,隨己烷所占比例增加,亦即隨混合物中較重組分比例的增加,臨界點向右遷移;圖2-1-9烷烴的雙組分臨界點軌跡曲線圖(據(jù)Brown等,1948)相態(tài)反轉現(xiàn)象小于3.90MPa3.90MPa3.90~4.15MPa4.15MPa大于4.15MPa4.153.90154156158160162t/℃3.253.504.504.254.003.75p/MPa氣液共存蒸汽EDCBApmaxtmax液相

相態(tài)反轉現(xiàn)象定義:溫度不變,增大壓力體系氣化;或者壓力不變,升高

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論