2022-2023學年四川省什邡市城南校中考數學適應性模擬試題含解析_第1頁
2022-2023學年四川省什邡市城南校中考數學適應性模擬試題含解析_第2頁
2022-2023學年四川省什邡市城南校中考數學適應性模擬試題含解析_第3頁
2022-2023學年四川省什邡市城南校中考數學適應性模擬試題含解析_第4頁
2022-2023學年四川省什邡市城南校中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.2.如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規(guī)律.則第(6)個圖形中面積為1的正方形的個數為()A.20 B.27 C.35 D.403.﹣23的相反數是()A.﹣8 B.8 C.﹣6 D.64.如圖,已知,那么下列結論正確的是()A. B. C. D.5.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.6.在實數|﹣3|,﹣2,0,π中,最小的數是()A.|﹣3| B.﹣2 C.0 D.π7.某班將舉行“慶祝建黨95周年知識競賽”活動,班長安排小明購買獎品,如圖是小明買回獎品時與班長的對話情境:請根據如圖對話信息,計算乙種筆記本買了()A.25本 B.20本 C.15本 D.10本8.在數軸上表示不等式組的解集,正確的是()A. B.C. D.9.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.10.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.72二、填空題(本大題共6個小題,每小題3分,共18分)11.如果m,n互為相反數,那么|m+n﹣2016|=___________.12.在平面直角坐標系xOy中,位于第一象限內的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.13.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現所得兩張紙片均為等腰三角形,則∠C的度數可以是__________.14.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.15.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.16.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.三、解答題(共8題,共72分)17.(8分)某學校為增加體育館觀眾坐席數量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數據:sin37°≈,tan37°≈)18.(8分)某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數量少于B種鋼筆的數量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經統計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數),銷售這批鋼筆每月獲利W元,試求W與a之間的函數關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?19.(8分)某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統計圖(不完整)。請根據圖中信息,解答下列問題:(1)根據圖中數據,求出扇形統計圖中的值,并補全條形統計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數.20.(8分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.21.(8分)三輛汽車經過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經過此收費站時,至少有兩輛汽車選擇B通道通過的概率.22.(10分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.23.(12分)某市正在舉行文化藝術節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術節(jié)紀念品.若購進甲種紀念品4件,乙種紀念品3件,需要550元,若購進甲種紀念品5件,乙種紀念品6件,需要800元.(1)求購進甲、乙兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共80件,其中甲種紀念品的數量不少于60件.考慮到資金周轉,用于購買這80件紀念品的資金不能超過7100元,那么該商店共有幾種進貨方案7(3)若銷售每件甲種紀含晶可獲利潤20元,每件乙種紀念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?24.如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據一次函數y=kx+b的圖象可知k>1,b<1,再根據k,b的取值范圍確定一次函數y=?bx+k圖象在坐標平面內的位置關系,即可判斷.【詳解】解:∵一次函數y=kx+b的圖象可知k>1,b<1,

∴-b>1,∴一次函數y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數的圖象與系數的關系.函數值y隨x的增大而減小?k<1;函數值y隨x的增大而增大?k>1;一次函數y=kx+b圖象與y軸的正半軸相交?b>1,一次函數y=kx+b圖象與y軸的負半軸相交?b<1,一次函數y=kx+b圖象過原點?b=1.2、B【解析】試題解析:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數為2+3+4+5+6+7=27個.故選B.考點:規(guī)律型:圖形變化類.3、B【解析】∵=﹣8,﹣8的相反數是8,∴的相反數是8,故選B.4、A【解析】

已知AB∥CD∥EF,根據平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.5、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B6、B【解析】

直接利用利用絕對值的性質化簡,進而比較大小得出答案.【詳解】在實數|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數是:-1.故選B.【點睛】此題主要考查了實數大小比較以及絕對值,正確掌握實數比較大小的方法是解題關鍵.7、C【解析】

設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意列出關于x、y的二元一次方程組,求出x、y的值即可.【詳解】解:設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意,得:,解得:,答:甲種筆記本買了25本,乙種筆記本買了15本.故選C.【點睛】本題考查的是二元二次方程組的應用,能根據題意得出關于x、y的二元二次方程組是解答此題的關鍵.8、C【解析】

解不等式組,再將解集在數軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.9、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.10、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:先用相反數的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數的性質.12、.【解析】

依據點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律.13、25°或40°或10°【解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據等腰三角形的性質求出∠ADB,再求出∠BDC,然后根據等腰三角形兩底角相等列式計算即可得解.【詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數可以為25°或40°或10°故答案為25°或40°或10°【點睛】本題考查了等腰三角形的性質,難點在于分情況討論.14、1【解析】

如圖作點D關于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點D關于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點睛】本題考查翻折變換、矩形的性質、勾股定理等知識,解題的關鍵是學會利用軸對稱,根據兩點之間線段最短解決最短問題.15、1【解析】

根據相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.16、有兩個不相等的實數根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數根.故答案為有兩個不相等的實數根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.三、解答題(共8題,共72分)17、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設計方案不滿足安全要求.18、(1)A種鋼筆每只15元B種鋼筆每只20元;(2)方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44支,購進B種鋼筆46支;(3)定價為33元或34元,最大利潤是728元.【解析】(1)設A種鋼筆每只x元,B種鋼筆每支y元,由題意得,解得:,答:A種鋼筆每只15元,B種鋼筆每支20元;(2)設購進A種鋼筆z支,由題意得:,∴42.4≤z<45,∵z是整數z=43,44,∴90-z=47,或46;∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,方案二:購進A種鋼筆44只,購進B種鋼筆46只;(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a-)2+729,∵-4<0,∴W有最大值,∵a為正整數,∴當a=3,或a=4時,W最大,∴W最大==-4×(3-)2+729=728,30+a=33,或34;答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.19、(1),補全條形統計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數為135人。【解析】試題分析:(1)由統計圖中的信息可知,B組學生有32人,占總數的40%,由此可得被抽查學生總人數為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統計圖了;(2)由(1)中計算可知,A組有12名學生,占總數的12÷80×100%=15%,結合全校總人數為900可得900×15%=135(人),即全校“非常了解”“食品安全知識”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數為:80-32-28-8=12(人),將圖形統計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學生對“食品安全知識”非常了解的人數為135人.20、,【解析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數等于乘以這個數的倒數將除法運算化為乘法運算,約分得到最簡結果,利用-1的偶次冪為1及特殊角的三角函數值求出a的值,代入計算即可求出值.解:原式=,當,原式=.“點睛”此題考查了分式的化簡求值,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母;分式的乘除運算關鍵是約分,約分的關鍵是找公因式.21、(1);(2)【解析】

(1)用樹狀圖分3次實驗列舉出所有情況,再看3輛車都選擇A通道通過的情況數占總情況數的多少即可;

(2)由(1)可知所有可能的結果數目,再看至少有兩輛汽車選擇B通道通過的情況數占總情況數的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點睛】考查了概率的求法;用到的知識點為:概率=所求情況數與總情況數之比;得到所求的情況數是解決本題的關鍵.22、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】

(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數,則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數形結合思想的應用.23、(1)購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品1件,乙種紀念品18件.(3)若全部銷售完,方案一獲利最大,最大利潤是1800元.【解析】分析:(1)設購進甲種紀念品每件價格為x元,乙種紀念幣每件價格為y元,根據題意得出關于x和y的二元一次方程組,解方程組即可得出結論;(2)設購進甲種紀念品a件,根據題意列出關于x的一元一次不等式,解不等式得出a的取值范圍,即可得出結論;(3)找出總利潤關于購買甲種紀念品a件的函數關系式,由函數的增減性確定總利潤取最值時a的值,從而得出結論.詳解:(1)設購進甲種紀念品每件需x元,購進乙種紀念品每

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論