




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.2.若雙曲線:的一條漸近線方程為,則()A. B. C. D.3.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形5.在等差數列中,若,則()A.8 B.12 C.14 D.106.設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則7.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態分布(),若,則D.設是實數,“”是“”的充分不必要條件8.已知向量,,當時,()A. B. C. D.9.方程在區間內的所有解之和等于()A.4 B.6 C.8 D.1010.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.11.集合,,則()A. B. C. D.12.關于函數,下列說法正確的是()A.函數的定義域為B.函數一個遞增區間為C.函數的圖像關于直線對稱D.將函數圖像向左平移個單位可得函數的圖像二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.14.若隨機變量的分布列如表所示,則______,______.-10115.已知是拋物線的焦點,是上一點,的延長線交軸于點.若為的中點,則_________.16.已知集合,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.18.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.19.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.20.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.21.(12分)已知函數.(1)討論的單調性;(2)函數,若對于,使得成立,求的取值范圍.22.(10分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數根,且,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.2、A【解析】
根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.3、D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.4、C【解析】
利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.5、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.6、C【解析】
根據空間中直線與平面、平面與平面位置關系相關定理依次判斷各個選項可得結果.【詳解】對于,當為內與垂直的直線時,不滿足,錯誤;對于,設,則當為內與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設,則當為內與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.7、D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態分布、充分條件與必要條件等,是一道容易題.8、A【解析】
根據向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數關系,屬于中檔題.9、C【解析】
畫出函數和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數關于點中心對稱是解題的關鍵.10、D【解析】
根據幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.11、A【解析】
解一元二次不等式化簡集合A,再根據對數的真數大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數的概念,屬于中檔題.12、B【解析】
化簡到,根據定義域排除,計算單調性知正確,得到答案.【詳解】,故函數的定義域為,故錯誤;當時,,函數單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數單調性,定義域,對稱,三角函數平移,意在考查學生的綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據球的幾何性質,利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質的應用,意在考查學生的直觀想象能力,數學運算能力和邏輯推理能力,屬于較難題.14、【解析】
首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.【點睛】本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.15、【解析】
由題意可得,又由于為的中點,且點在軸上,所以可得點的橫坐標,代入拋物線方程中可求點的縱坐標,從而可求出點的坐標,再利用兩點間的距離公式可求得結果.【詳解】解:因為是拋物線的焦點,所以,設點的坐標為,因為為的中點,而點的橫坐標為0,所以,所以,解得,所以點的坐標為所以,故答案為:【點睛】此題考查拋物線的性質,中點坐標公式,屬于基礎題.16、【解析】
解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法求線面角,屬于中檔題.18、(1)(2)【解析】
(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.19、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面內,所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.20、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【點睛】本題主要考查線面垂直的判定定理,線面角的應用,還考查了轉化化歸的思想和空間想象運算求解的能力,屬于中檔題.21、(1)當時,在上增;當時,在上減,在上增(2)【解析】
(1)求出導函數,分類討論確定的正負,確定單調區間;(2)題意說明,利用導數求出的最小值,由(1)可得的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年平安教育培訓方案表
- 八一建軍節活動方案流程12025年
- 2025年中國旅游日主題活動方案
- 大學商務禮儀課程教學
- 2025年學校數學工作方案演講稿
- 籃球課程思政教學設計
- (盛高培訓之四)薪酬體系設計技術(資料1)
- 上海思博職業技術學院《體育與健康-健美操》2023-2024學年第一學期期末試卷
- 廣西理工職業技術學院《計算機輔助設計》2023-2024學年第二學期期末試卷
- 巴中職業技術學院《綜合商務英語III》2023-2024學年第一學期期末試卷
- 2025年職業指導師專業能力測試卷:職業指導服務與心理咨詢
- 2024年山東電力中心醫院高層次衛技人才招聘筆試歷年參考題庫頻考點附帶答案
- 浙江省四校聯考2023至2024學年高一下學期3月月考化學試題附參考答案(解析)
- 左心衰竭合并肺水腫的護理查房
- 重力壩畢業設計-水電站混凝土重力壩工程設計
- 創維公司逃稅案分析
- 《淹溺急救》PPT課件(2022版)
- EPC項目管理之安全文明施工責任制度
- 第二節模糊綜合評價法
- 《雷鋒叔叔_你在哪里》說課稿55481
- CFM567反推裝置介紹
評論
0/150
提交評論