




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘭州交通大學畢業設計(論文)蘭州交通大學畢業設計(論文)任務書課題北京某地鐵線區間(K13+510.000-K13+585.600)隧道(含區間迂回風道)設計姓名宿穩平專業土木工程班級土木088班設計任務1.根據所給資料,根據工程地質與水文地質條件,參照區間隧道設計規范和標準,進行線路平縱斷面設計、結構設計(包括主體結構設計、附屬結構設計和臨時結構設計。)并繪制區間隧道標準斷面圖、區間隧道標準斷面配筋圖、區間隧道縱斷面圖、區間隧道結構平面圖、風道結構設計圖。2.對區間隧道主體結構設計中結構型式及結構支護參數及尺寸進行計算、結構計算包括結構二維計算。對荷載與荷載組合進行計算。3.進行施工組織設計。施工單位的施工組織設計(實施性施工組織設計)應包括以下內容:隧道工程說明書,工地詳細平面布置圖,工程預計進度表,各工程項目分月完成工作量表,各項資源計算表及說明,組織機構設置,勞動力分月表,各項材料分月需要量表,施工機具需要量及使用起訖日期表,材料及備品需要量表,技術復雜工序及新施工方法的技術操作規定,保證質量及安全的技術組織措施等。4.編寫設計說明書。應包括自然條件,工程概況,設計依據及各項技參數的選定和設計內容等5.分別用中英文撰寫畢業設計摘要(500字左右),并用計算機打印。設計要求1.根據所給資料,參照《地鐵設計規范》<GB50157-3003>和《地下鐵道工程施工及驗收規范》<GB50299-1999>,《混凝土結構設計規范》<GB50010-2002>,設計并用CAD制圖軟件繪制隧道縱橫斷面圖(1:1000)。2.進行襯砌結構的設計和計算。參照標準圖進行隧道襯砌結構設計,利用給定或自編的程序計算襯砌結構的內力并檢算其抗壓和抗拉強度。3.進行施工組織設計。4.編寫設計說明書。5.編寫英文的摘要。指導教師簽字系主任簽字主管院長簽章蘭州交通大學畢業設計(論文)開題報告表課題名稱北京某地鐵線區間(K13+510.000-K13+585.600)隧道(含區間迂回風道)設計課題來源工程實際課題類型AY導師學生姓名學號專業土木工程一、調研資料的準備北京某地鐵線區間(K13+510.000-K13+585.600)隧道(含區間迂回風道)處的地質資料和地形圖,《地鐵設計規范》<GB50157-3003>和《地下鐵道工程施工及驗收規范》<GB50299-1999>,《混凝土結構設計規范》<GB50010-2002>,和部分外文書籍。畢業設計目的設北京某地鐵線區間(K13+510.000-K13+585.600)隧道(含區間迂回風道),其結構的設計使用年年限為100年,按荷載基本效應組合計算,襯砌結構的抗震作用符合8度抗震烈度,地下工程的主要部件的防火等級為一級。在戰時應能滿足人防工程的要求。三、思路與預期成果根據相關的規范《地鐵隧道設計規范》和設計要求進行設計,并能夠按期的完成畢業設計,基本掌握地鐵隧道的設計。尤其對北京地區地鐵隧道從設計到施工獲得深入了解,為以后工作打下基礎,得到實踐經驗。四、階段任務的完成內容及時間安排第5周:查閱外文資料,并以其進行翻譯和學習。第5-6周:熟悉圖紙和相應的設計要求,仔細研究地質條件,明確基本的設計方向。第8周:確定開挖斷面面積及結構斷面形式。第9周:和同組同學進行溝通確定相鄰斷的銜接問題。第10-11周:襯砌結構設計及檢算。第12周:繪制襯砌結構橫斷面圖。第13周:整理以前的計算資料。第14周:熟悉隧道施工組織設計內容。第15周:施工方案的選擇,組織機構設置和施工隊伍的分工,并交開題報告。第16周:臨時工程和總體工程進度安排,監控量測和施工控制測量。第17周:整理資料,準備答辯。(可另加附頁)指導教師意見簽名:年月日課題類型和性質:(1)A—工程設計;B—技術開發;C—軟件工程;D—理論研究;(2)X—真實課題;Y—模擬課題;Z—虛擬課題(1)、(2)均要填,如AY、BX等。蘭州交通大學畢業設計(論文)學生自查表(中期教學檢查用)學生姓名專業土木工程班級指導教師姓名職稱講師課題名稱北京某地鐵線區間(K13+510.000-K13+585.600)隧道(含區間迂回風道)設計個人精力實際投入日平均工作時間6小時周平均工作時間42小時迄今缺席天數0出勤率%100%指導教師每周指導次數3次每周指導時間(小時)9小時備注畢業設計(論文)工作進度(完成)內容及比重已完成主要內容%待完成主要內容%任務計劃書,開題報告;英文資料的翻譯;地形平面圖的繪制,地質剖面圖,限界的確定;迂回風道結構圖的繪制,區間隧道橫斷面圖的繪制;隧道結構荷載的確定以及結構內力計算。55迂回風道襯砌的內力計算與檢算;區間隧道襯砌的檢算與配筋;施工組織方案的確定;整理以前的計算資料與圖紙;并撰寫設計說明書。45存在問題在進行結構內力計算時,運用軟件sap2000不太熟練,甚至不足;由于對盾構法施工不太熟悉,在設計中有諸多不合理之處;由于區間隧道結構底板下有層間水,是否考慮抗浮驗算存在問題;在施工組織中需多查閱資料,以完善和補充。指導教師簽字:年月日摘要本畢業設計主要包括兩個部分,第一部分是北京某區間(K13+510.000—K13+585.600)隧道結構設計;第二部分是北京某區間(K13+510.000—K13+585.600)隧道施工組織設計;在第一部分區間隧道結構設計中,根據工程地質與水文地質條件,參照區間隧道設計規范和標準,對區間隧道進行結構設計(包括主體結構設計、附屬結構設計),并繪制區間隧道橫斷面圖、區間隧道縱斷面圖、區間隧道結構平面圖、風道結構設計圖。通過施工方案的比選,確定盾構法施工,隧道襯砌結構平板型鋼筋混泥土管片,利用fortran程序進行襯砌內力計算與檢算,并對其進行相應的強度和抗浮驗算。第二部分是區間隧道施工組織設計,根據隧道施工方法和隧道周邊的環境情況,對施工前準備工作,施工場地布置,隧道開挖與襯砌結構施工等進行設計,并編制了工程進度計劃,編寫了相應的質量、安全、環境保護等措施。關鍵詞:盾構;結構設計;內力計算;檢算;施工組織 ABSTRACTThedesignmainlyincludestwoparts.Thefirstpartisthetunnelstructuredesignofarange(theK13510.000-theK13585.600);Thesecondpartisarange(theK13510.000-theK13585.600)tunnelconstructiondesign.Inthefirstpartofthesectiontunnelsstructuraldesign,engineeringgeologicalandhydrogeologicalconditions,thereferenceintervaltunneldesignnormsandstandards,structuraldesign(includingthemainstructureofthedesignoftherunningtunnels,subsidiarystructuraldesign),anddrawthecross-sectionaldiagramoftherunningtunnels,therangeoftunnellongitudinalsectionstructureplanofrunningtunnels,ductstructuredesign.Comparisonandselectionoftheconstructionprogramtodeterminetheshieldconstruction,thestructureofflatreinforcedconcretetunnelliningsegments,fortranprogramliningcalculationandCalculation,andthecorrespondingstrengthandanti-floatingchecking.
Thesecondpartisthetunnelsectionconstructionarrangementdesign.Accordingtothetunnelconstructionmethodsandtheenvironmentaround,thepreparationbeforetheconstruction,constructionsitelayout,tunnelexcavationandliningconstructionisdesigned.Theprojectschedule,thequality,thesafetyandtheenvironmentprotectionaremade.Keywords:shield;structuraldesign;internalforcecalculation;checkingcalculation;constructionorganizations蘭州交通大學畢業設計(論文)1目錄1. 緒論 ⑤建立規范統一的測量記錄手薄,認真填寫測量記錄。6.8.3消防安全措施(1)消防器材的放置。場地上重要的機械設備、油庫、辦公室、更衣室、倉庫等均設置消防器材。(2)站臺層和站廳在顯眼處也設置消防器材。隧道內每隔50m設置一個滅火器,盾構頭部設置一組滅火器。(3)隧道內嚴禁吸煙。在井下合理位置布置一吸煙點,并配備滅火器材。結論本次設計中主要是北京某地鐵線區間(K13+510.000-K13+585.600)隧道(含區間迂回風道)設計。包括區間隧道和迂回風道的平縱斷面設計、襯砌內力的計算與檢算以及施工組織設計兩部分內容。(1)在結構設計過程中,綜合地質情況、施工方法、以及車輛類型(A型車)決定隧道限界,斷面形式,最終確定區間隧道為圓形結構,迂回風道為直墻圓拱結構形式。(2)在計算結構襯砌內力的計算與檢算過程中,運用fortran程序和Excel計算,通過檢算,管片能夠滿足強度要求。(3)對結構進行抗浮驗算,能夠滿足要求,并進行了管片斷面設計。(4)在施工組織設計中,全面考慮施工高效、科學、安全的原則,結合盾構施工的特點,詳細的進行設計,能夠滿足施工要求。(5)同時在斷面設計中用CAD繪制區間隧道的平面圖、縱斷面圖、迂回風道橫斷面圖。在設計過程中,大量地用運了EXCEL、Word、AutoCAD等軟件。同時,設計嚴格依據《地鐵設計規范》和其他規范進行。致謝畢業設計是對大學四年的的學業成果的一次檢閱,同時又是從面向社會、面向基層、面向工程出發,其目的是使學生在學完培養計劃所規定的基礎課、技術專業課及各類必修和選修專業課之后,通過這次畢業設計,在培養學生從事科技工作正確思想方法的同時,培養學生勇于探索、敢于創新、實事求是、用實踐來檢驗理論,全方位地考慮問題等科學技術人員應具有的素質。通過設計,我深刻地感受到理論知識與工程實踐相結合的重要性,從設計中,我全面地鍛煉了自己綜合運用知識以及捕捉信息的能力,而且我也深深地發現自己在學習過程中的欠缺和不足,基礎知識不夠扎實。完成這次畢業設計后,我對今后工作和學習充滿信心,對未來充滿必勝的信念!經過了近三個月的努力,畢業設計終于完成了。隨著大學四年最后一項學習任務的完成,也標志著我在大學的學習、生活將告以段落。四年以來,老師的悉心教導、同學的熱情幫助,讓我學到了許多知識,同時也讓我學會了做人的道理,這將是我一生最大的財富。而本次畢業設計是對我大學四年學習成果的一次綜合檢驗,也是對我四年所學的專業知識的進一步強化和提高。在該設計的構思、設計以及定稿過程中,我得到了陳志敏老師耐心、細致的指導。陳老師雖然教學任務和工程任務都比較重,但是他總是盡他所能的幫助我們,并為我們提供必要的參考資料以及很多的經驗指導。由于我們所學的知識與完成設計所需要的知識存在一定斷層,陳老師不辭辛勞的為我們補課。在此,我對陳老師的悉心教導表示誠摯的感謝!此外,在做設計的過程中,我的同學也給予了我很多幫助,在此也表示感謝。宿穩平2012年6月7日參考文獻[1]張一寧.地鐵旁通道和凍結法施工風險分析與建議[J].城市道橋與防洪,2010[2]劉志強.隧道工程[M].徐州:中國礦業大學出版社,2002[3]高少強.隋修志.隧道工程[M].北京:中國鐵道出版社,2003[4]朱合華.地下建筑結構[M].北京:中國建筑工業出版社,2005[5]夏軍武.賈福萍.結構設計原理[M].徐州:中國礦業大學出版社,2007[6]翁家杰.地下工程[M].北京:煤炭工業出版社,1995[7]秦漢禮.盾構隧道鋼筋混凝土管片制作技術[J].隧道建設,2006[8]朱合華.土壓平衡盾構法施工參數的模型試驗研究[J].巖土工程學報雜志編輯部,2006[9]翁家杰.地下工程[M].北京:煤炭工業出版社,1995[10]孫均.地鐵隧道盾構掘進施工市區的環境土工安全技術標準及其變形與沉降控制[J].世界隧道,2000(增刊):233~240[11]施仲衡.張彌等.地下鐵道設計與施工[M].西安:陜西科學技術出版社,1997.6,378~381附錄一翻譯部分原文AnalysisofSettlementCausedbyTBMConstructioninSandFormationsinBeijingABSTRACTBasedondatacollectedintunnelboringmachine(TBM)constructioninBeijingsubway,soilsettlementpredictionmodelsforsandformationsareanalyzedandverified.ThroughtheanalysisofPeck’sformula,thepaperpointsoutthatthepreconditionistodeterminethecoefficientofsettlementgroovewidth(i),whileiisfurthercontrolledbythemaximumsettlementofsingletunnel(δ1max).ByusingthesettlementequationofTakeyamaTakashi,δ1maxcanbecalculateddirectly,buttheelasticmodulus(E)shouldbeanequivalentvaluethatrepresentsallthesoilsinvolved.Inthecalculationofthecoefficientofsettlementgroovewidth(i)byusingO'Reilly-Newmethod,theresultsislargelyaffectedbytheformationparameters.InordertofindanidealmodeltopredictthesettlementinTBMconstructioninBeijingsandyformation,modifiedcalculationmethodsofEandiarerecommended.Theresultsshowthatthemaximumsettlementinthegroundsurface,thetotalwidthofsettlementgrooveandthesettlementcurveinthecrosssectionmatchmonitoreddataverywell.Fordoubleparalleltunnels,thesettlementatanypointcanbecalculatedbyaddingindividualsettlementgeneratedbyeachtunnelconstruction,andeachofwhichcanbecalculatedbyusingtheformulasofPeckandTakeyamaTakashi.Butthesettlementsatthecenterlineofeachtunnelaredifferent.Theamountofsettlementisaffectedbyconstructionsequenceofthetwotunnels.Theearlierthetunnelisconstructed,thelargertheeventuallysettlementis.KEYWORDSTBM;Settlement;CoefficientofSettlementGrooveWidth;Peck;TakeyamaTakashi;BeijingsubwayINTRODUCTIONRecentyearstheBeijingsubwayextendsatthespeedofabout100kmeveryyear.MostofthesubwaytunnelsareconstructedbyusingearthpressurebalanceTBMmethod.BecauseBeijingcityliesintheintersectionareaofplainandmountain,themainformationsencounteredinTBMconstructionaresand,gravel,siltysand,finesand,clay,etc.EspeciallyineasternBeijing,thesubwaytunnelsarenormallyinthedepthof20munderground,andthesand-gravelformationsarefullofwater.Inthiskindofsituation,settlementcontrolisabasicrequirement;otherwisebuildings,pipelinesandotherundergroundinfrastructureswillbeaffectedseverely,evendamaged.SohowtoexactlypredictsoillossinTBMconstructionisveryimportant.ByfarthemethodsforanalysisofsettlementinducedbyTBMarederivedfromtheoretical,experienceornumericalanalysis.Amongthem,Peck’sformulaiswidelyaccepted.Itsupposesthesettlementiscausedbysoillossandthevolumeofsettlementgrooveequivalentstothevolumeofsoillossifconstructionisunderundrainedconditions.ThecurveofgroundsettlementgroovebyPeck’sformulaisdistributedintheshapeofnormalcurve(Peck,1969).O'Reilly-NewputforwardanotherformulatocalculatethesettlementgroovewidthgeneratedbytheTBMconstructionindifferentburieddepthoftunnels(O'Reilly,1982).Attewellinducedothertwofactors,kandn,tocalculatethesettlementgroovewidth(Attewell,1986).In1982FujitaofJapananalyzed74settlementcasescausedbyTBMconstruction.TheresultshowedthattheshapeofthesettlementgroovewasverysimilartothatofPeck’scurve.Thereafter,theJapanesescholarTakeyamaTakashiabsorbedthelatestresearchresultsfromelasticfiniteanalysis,analyzedthemonitoreddata,andthenbroughtforwardthemodifiedsettlementpredictionformula(Rankin,1988andWei,2010).Anyway,ifthesettlementistobepredictedproperly,besidesemployingasuitablesettlementformula,thechoiceoftheproperparametersofsoilsandconstructionisequallyimportant.Thefollowingpartdemonstratessomesuccessfulpredictionpracticefortheselectionofsettlementcalculationformulaanddisposingtechniqueofsoilparameters.SETTLEMENTDETERMINATIONTHEORIESPeck’sformula.ThemostacceptedPeck’sformulaforthecalculationofgroundsettlementyieldedbytunnelboringconstructionisasfollows:So,Equation(1)takestheformDeterminationofcoefficientofsettlementgroovewidth(i).Therearethreewaystoobtainthecoefficientofsettlementgroovewidth(i).Method1.AccordingtotherecommendationofEnglishscholarO'Reilly-New,icanbedeterminedaccordingtotunneldepthandsoiltypes,asshowninEquation(4).i=α?Z(4)Whereα=Factorrelatedtosoil.α=0.4forhardclay;α=0.7forsoftclay;α=0.5formediumhardclay;α=0.2~0.3forsand.Z=Tunneldepthfromgroundsurfacetothetopofatunnel,m.Method2.AccordingtoKloofandSchmid(Zhouwenbo,2004;Yinluchao,1999;ZhangFengxiang,2005),forplasticundrainedclay,thecoefficientofsettlementgroovewidthcanbecalculatedbyEquation(5).WhereR=Outerdiameteroftunnelbore,mMethod3.icanbecalculatedaccordingtogeologicalcondition,tunneldepthandtunnelradius,asshowninEquation(6).Whereφ=Internalfrictionangelofsoil,degreeFurthermore,scholarCordingregardssettlementgrooveasVshapeslot,sothesettlementgroovewidthcanbesimplifiedas:B=5i(7)WhereB=Settlementgroovewidth,mExperienceformulaofTakeyamaTakashi.Throughthestudyofmonitoreddataandtheachievementofelasticfinite,TakeyamaTakashideducedthefollowingequationtocalculatethemaximumsettlementgeneratedbytunnelTBMconstruction.Themaximumsettlementproducedbysingletunnelconstructionis:Themaximumsettlementinducedbydoubletunnelsconstructionis:Whereδ1max=MaximumsettlementinsingletunnelTBMconstruction,mδmax=MaximumsettlementindoubletunnelTBMconstruction,mH=Distancebetweenthetopoftunnelandgroundsurface,mD=Outerdiameteroftunnelbore,mE=Weightedmeanvalueofsoilelasticmodulus,MPaW=Netdistancebetweentwotunnels,mCASESTUDIES:TBMCONSTRUCTIONBETWEENSTATIONSOFSANYUANBRIDGEANDLIANGMARIVERINBEIJINGSUBWAYLINE10ThetunnelbetweenstationsofSanYanBridgeandLiangMaRiverinBeijingSubwayLine10isconstructedbyearthpressurebalancetunnelboringmachine.Thedistancebetweenlefttunnelandrighttunnelis12m.Thedepthbetweenthetopoftunnelandgroundsurfaceis12~16m,theouterdiameteroftunnelboreis6.28m.Theformationsencounteredintheconstructionaresilt,siltyclay,clay,siltysand,andsand.Thegroundwaterisabovethebottomoftunnelbase(Co.,Ltd.2003).Whilethetunnelsectionisrunningalongtheeastthirdringroad,therearemanybridges,buildings,pipelinesabovethetunnel,sothesettlementcontroloftheconstructionisverystrict.InordertodiscussthesettlementpredictiontheoryforBeijingsubwayconstruction,asanexample,onerandomsectionischosen,forsimplicity,hereandthereafternameitSectionA.Itslengthis50m,thedistancebetweendoubletunnelscenterlinesis12m,andthecoverdepthoftunnelHis14.2m.Thetunnelisadvancedintheformationsoffinesandandmediumcoarsesand.ThemainparametersofsoilsarelistedinTable1.SOILSETTLEMENTPREDICTIONMaximumgroundsurfacesettlementcausedbysingletunnelTBMconstruction.ByusingEquation(9),themaximumgroundsurfacesettlementcausedbysingletunnelTBMconstructioninSectionAcanbecalculated.HereH=14.2m,D=6.28m,whileEisregardedasweightedaveragevalueofeachsoillayers,asshowninEquation(10).WhereEs=Weightedcompressionmodulusofallsoillayers,MPaEsi=Compressionmodulusofsoillayeri,MPahi=Depthofsoillayeri,mByusingEquation(10)andthedatainTable1,Es=15.2676MPa.Moreover,theelasticmoduluscanbeobtainedbyusingEquation(11)ifcompressionmodulusisknown.Coefficientofsettlementgroovewidth(i)andsettlementgroovewidth(B).Inthisproject,theformationsencounteredintunnelconstructionaresaturated,dense,lowcompressiblesiltysandandmediumcoarsesand.Whiletheformationsabovethetunnelareplasticmediumcompressiblesiltyclayanddensemediumcompressiblesilt.Asmentionedbefore,forsandlayersi=0.25Z;forsiltyclayi=0.5Z;forsilti=0.35Z.Soheretheweightedmeanvalueisdefinedasthefinalivalue,asshowninequation(12).=Accordingtoequation(7),thetotalsettlementgroovewidthcausedbysingletunnelboringconstructionis5i=5×6.788m=33.942m.Groundsurfacesettlementcausedbysingletunnelconstruction.Ifiandδ1maxareknown,thegroundsurfacesettlementinanypoint(δ1(x))canbecalculatedbyequation(3),asshowninTable2.Notethatδ1max=14.1mminthetable.Table2indicatesthatifthedistancefromanypointingroundsurfacetohorizontaltunnelcenterlineisgreatthan17.5m,thenthesettlementislessthan0.5mm.Thismeansatthatpointtherewillonlytinyinfluencebytunnelboringconstruction.Sothetotalsettlementgroovewidthcanbeconsideredas2×17.5=35m,whichismuchclosertothevalueof5i(33.94m).Groundsurfacesettlementcausedbydoubletunnelsconstruction.Maximumsettlementafterdoubletunnelsconstruction.Generallythenearerdistancethedoubletunnelsis,thegreateradditionalsettlementcausedbythetunnelboringconstructionis.Intheprojectmentionedabove,δ1max=14.1mm,thenetdistancebetweenthetwotunnelsW=5.72m,tunneldiameterD=6.28m.Thusfromequation(9)δmax=17.6mm,thatmeans,themaximumgroundsettlementafterthedoubletunnelsconstructionis17.6mm.Settlementdevelopingprocessintheconstructionofthesecondtunnel.Followingistheanalysisofsettlingprocessintheconstructionperiodofthesecondtunnel.(1)Intheperiodofthefirsttunnelhasbeenfinishedandthesecondtunnelconstructionnotyetbegin,themaximumgroundsettlementcausedbythefirsttunnelisδ1max=14.1mm,asmentionedabove.Withtheincreaseofthedistancetotunnelcenterline,thegroundsettlementcausedbythefirsttunnelconstructionwillgraduallydecrease.Byusingequation(3)andsettingi=6.788m,wecanobtainδ1(6)=9.6mmwhenx=6mandδ1(12)=3.0mmwhenx=12mrespectively.(2)Theadditionalgroundsettlementcausedbythesecondtunnelconstructionisthesubtractionofthetotalmaximumsettlementcausedbydoubletunnelsconstructionfromthesettlementcausedbythefirsttunnelconstruction.(LiuBo,TaoLong-guangandDingCheng-gang,etal.2006).Forthepointsonsymmetrytunnelliner,x=6m,δ2(6)=δmax-δ1(6)=17.6-9.6=8.0mm.(3)Theaccumulatedgroundsettlementabovethesecondtunnelcenterlineconsistsoftwoparts.Thefirstpartisthesettlementcausedbythefirsttunnelconstructioninthepoint,δ1(12)=3.0mm.TheSecondpartisthesettlementcausedbythesecondtunnelconstruction,whichcanbecalculatedbyusingequation(3).Hereδ2(6)=8.0mm,i=6.788mm,δ2max=11.8mm.Sothetotalgroundsettlementabovethesecondtunnelcenterlineis:δ2max+δ1(12)=11.8+3.0=14.8mm.(4)Theaccumulatedgroundsettlementabovethefirsttunnelcenterlinealsoconsistsoftwoparts.Firstthesettlementcausedbythefirsttunnelconstructioninthepointδ1max=14.1mm.Thesecondpartisthesettlementcausedbythesecondtunnelconstruction,whichcanbecalculatedbyusingequation(3),whereδ2(12)=2.51mm,i=6.788mm.Sothetotalgroundsettlementabovethefirsttunnelcenterlineis:δ1max+δ2(12)=14.1+2.51=16.61mm.Throughtheaboveanalysis,thetotalsettlementabovethesecondtunnelcenterline(14.8mm)islessthanthatabovethefirsttunnelcenterline(16.61mm).Totalsettlementatanypointafterdoubletunnelscompletion.Thesettlementatanypointingroundsurfacecausedbytwodoubletunnelsconstructioncanbecalculatedbyfollowingequation:δ(x,y)=δ1(x)+δ2(y)(13)Wherex=Horizontaldistancefromcalculatingpointtocenterlineoffirsttunnely=HorizontaldistancefromcalculatingpointtocenterlineofsecondtunnelInsectionA,thelefttunnelisfirstlyconstructed,thentherighttunnel.Afterthetwotunnelscompletion,thesettlementatanypointingroundsurfacecanbecalculated:(1)Ifcalculatingpointislocatedattheleftofthelefttunnel,thenxequalsthedistancefromthepointtocenterlineoflefttunnel,andy=W+D+x.Forinstance,ifx=6m,theny=18m,δ(6,18)=δ1(6)+δ2(18)=9.6+0.3=9.9mm.(2)Ifcalculatingpointliesinthemiddleofthecenterlinesoflefttunnelandrighttunnel,forexample,ifx=6m,theny=W+D-x=6m,δ(6,6)=δ1(6)+δ2(6)=9.6+8.0=17.6mm.Thisvaluerepresentsthegreatestsettlementcausedbydoubletunnelsconstruction,wherelocatedinthegroundabovethenearesttunnelliner.(3)Ifcalculatingpointisattherightoftherighttunnel,e.g.,ify=6m,thenx=18m,δ(18,6)=δ1(18)+δ2(6)=0.4+8.0=8.4mm.Furthermore,theindividualandaccumulatedgroundsettlementcausedbythefirstandthesecondtunnelsarecalculated,asshowninFigure1.COMPARISONOFPREDICTEDSETTLEMENTANDMONITOREDDATAMonitoredgroundsettlementgeneratedbythefirsttunnelconstruction.Inordertoevaluatethesettlementinducedbythefirsttunnelconstruction,elevensettlementobservationpointsingroundsurfaceoflefttunnelcenterlineareburiedinSectionAinthelengthof50m.Thedistancebetweentwoneighboringobservationpointsis5m,andthepointsareenumerated1~11.ThelefttunnelwasfirstlyconstructedandpassedthroughsectionA,then6monthslater,therighttunneldrilledthroughsectionAalso.Table3listedtheobservedsettlementdataafter60daysoflefttunnelpassedthrough,whilerighttunnelnotreachedhereyet(about150mawayfromsectionA).Theaveragesettlementofthe11observationpointsingroundsurfaceabovethelefttunnelcenterlineis13.56mm,whilethemeansettlementofthe7observationpointsingroundsurfaceabovetherighttunnelcenterlineis4.88mm.Thesesettlementsarecausedonlybytheconstructionoflefttunnelandobservedafter60dayslateroftheconstruction.Figure2comparedthetheoreticalsettlementvalueandactuallyobservedsettlementingroundsurfaceabovethelefttunnelcenterline.Itcanbeseenthatthetheoreticalvalue(δ1max=14.1mm)almostequalstheaveragesettlementof11observationpoints.Figure3showsthecomparisonofobservedsettlementvalue,whichismonitoredafter60dayslateroftheconstructionoflefttunnel,andthecalculatedsettlementingroundsurfaceabovetherighttunnelcenterline.Itcanbeseenthatalthoughthereare12mbetweenlefttunnelcenterlineandtherighttunnelcenterline,yetproducedabout4.0mmsettlementontherighttunnelcenterlineonlybecauseoftheconstructionoflefttunnel.Undertheconditionofδ1max=14.1mm,asmentionedearlier,δ1(12)=3.0mm.Sothedeviationbetweenobservedvalueandtheoreticalvalueisabout1mm,whichdemonstratesabovetheoreticalformulaisbelievable.Accumulatedsettlementsbydoubletunnelsconstruction.Figure4showsthegroundsettlementatobservationpointnumber10.Afterthelefttunneladvancedhereandreachedstable,theultimatesettlementwas12.75mm.Aftertherighttunnelpassedthrough,theadditionalsettlementincreasedforaperiod,eventuallystabilizedat4.46mm,atthattimethetotalsettlementatpoint10reached17.21mm,whichwasveryclosetothetheoreticalvalue16.61mmFigure5showsthemonitoreddataofarandompointSYA24,whichislocatedattherightoftherighttunnel.Thedistanceofthepointtothelefttunnelcenterlineis18.5m,totherighttunnelcenterlineis6.5m.Lefttunnelconstructioncaused1.85mmsettlement,thenwhentherighttunnelalsofinisheditcausedtotal7.61mmsettlementatthatpoint.Whenthelefttunnelpassedthrough,thesettlementofthepointx=18.5isδ1(18.5)=0.3mm;whentherighttunnelpassedthrough,thesettlementofthepointy=6.5isδ2(6.5)=7.5mm.Accordingtoequation(13),thetotalsettlementatthepointshouldbe7.8mm,whichisveryclosertothemonitoredvalue7.61mm.Moreover,throughtheanalysisofallmonitoreddatagatheredinleftandrighttunnelconstruction,itisshowedthatthemaximumsettlementpointsaredistributedintheareasbetweenlefttunnelandrighttunnel,andmostofthemarelocatedatthegroundsurfaceabovethenearesttunnelliner,thevalueisinthescopeof17mmand20mm.Comparedwiththetheoreticalvalueδmax=17.6mm,thedeviationisacceptable.Thereforethecalculationequationsmentionedabovefortotalsettlementindoubletunnelconstructionisbelievable.Maximumgroundsettlementsunderdifferentdistancebetweentwotunnels.Forδmaxmustgreatthanδ1max,equation(9)isonlysuitableundertheconditionofW/(2D)<0.7inthecalculationofsettlementcausedbydoubletunnelsconstruction.Therefore,formosttunnelsinBeijingsubway,whilethediameteroftunnelis6m,thedistancebetweentunnelcenterlinesshouldbettergreatthan14m,sothatthetotalsettlementinthefirsttunnelcenterlinewillhaveonlytinyincreasebecauseoftheconstructionofthesecondtunnel.Figure6showsthattotalsettlementalmostkeeplinearincreasewiththedecreaseofthenetdistancebetweentwotunnels,ifthenetdistanceislessthan1.4D.Monitoredsettlementgroovewidth.Inordertodeducethesettlementgroovewidth,theobservationdatafromthecrosssectionaroundpointnumber6areutilized.Theobservationpointsareinline,whichthelinedirectionisperpendiculartothedirectionoftunnelcenterline.Total7monitoringpointsaresetuponbothsideofpointNo.6,twoofthemsetintheleft,andtheothersareintheright.Thedistanceofnearbytwomonitoringpointsis3m.Thedatarecordedarelistedintable4andplottedonFigure7.Itcanbeseenthatthecalculatedvaluecoincidesperfectlywiththeactualmonitoredsettlement.ThetotaltrendisalsoaccordwiththecurveofPeck’snormalsettlementcurveverywell.Themonitoredsettlementofthemostoutsidepointis1.82mm,whilethedistanceofthepointtothecenterlineofmaximumsettlementis15m.AlsoFigure5showedthattheactualmonitoredsettlementaroundobservationpointSYA24is1.85mm,whilethedistanceofthepointtothemaximumsettlementlineis18.5m.Thereforetheminimumsettlementgroovewidthcausedbysingletunnelconstructionisatleast30m.Accordingtothistrend,thewidthisdeducedtobe35m,whichisveryclosetotheabovecalculatedvalue33.941m.Sotheequationsforcalculatingthesettlementgroovewidthinthearticlearecorrect,andtheyaresuitableforpredictionthesettlementgeneratedinTBMtunnelconstructioninsandformationsinBeijingsubway.CONCLUSIONUpontheaboveanalysis,thefollowingconclusioncanbedrawn:(1)Ifsoilparametersareselectedproperly,thesettlementgeneratedbyTBMtunnelconstructioninBeijingsubwayinsandyformationscanbepredictedaccuratelybyusingtheformulasofPeckandTakeyamaTakashi.(2)WhensettlementiscalculatedwiththeformulaofTakeyamaTakashi,themaximumsettlementwillincreasewiththedecreaseofweightedelasticmodulus,andthesoilmodulusshouldcalculatedwiththeweightedaveragevalueofallsoillayers’compressionmodulus.(3)Thecoefficientofsettlementgroovewidth(i)shouldbetakenastheweightedaveragevalueofdifferentsoils.Thewidthofsettlementgroovecausedbysingletunnelconstructionisabout5i.(4)Themaximumsettlementforthedoubletunnelconstructionliesintheareasbetweentwotunnelcenterlinesifthenetdistancebetweenthemislessthan1.4tunneldiameter(D).Theinfluencebythefollowingconstructedtunnelwillbeminimizedifthenetdistancegreaterthan1.4D.(5)Thesettlementfromthemiddlelineofthetwotunnelcenterlinestooutsideisnotsymmetric.Groundsettlementnearthefirstlyconstructedtunnelwilllargerthanthatoflaterconstructedone.翻譯對北京地區沙地層TBM隧道施工所造成沉降的分析摘要根據在北京地鐵運用TBM開挖隧道施工過程中所得資料,利用土沉降預測模型對沙性土進行了分析和檢驗,通過Peck法則的分析,報告指出首要必須確定沉降槽寬度的系數(i),而i值是進一步控制最大計算單隧道(δ1max)。通過TakeyamaTiakash方程,δ1max能夠被直接計算出來,但是彈性模量E應該是一個代表各種土質的等效值,用O'Reilly-New方法計算沉降槽寬度系數(i),其結果受土壤構造物參數大量的影響,為了找到一種理想的模型去預測北京地區沙性土TBM隧道施工帶來的沉降,修正計算方法中的E和i值都是推薦值,其結果顯示了地表沉降的最大值,整個沉降槽的寬度和沉降曲線與監測數據相符。對于平行雙線隧道,其沉降在一定程度上能夠通過增加對每個單線隧道施工引起的沉降的計算而算的,而單線隧道沉降由Peck和TakeyamaTakashi.法則計算,但是每條隧道的中心線沉降不同,沉降數量受兩條隧道施工次序的影響,越早施工的隧道,其最終沉降量越大。關鍵詞:TBM沉降沉降槽寬度PeckTakeyamaTakashi北京地鐵說明近些年來,北京地鐵以大約每年100公里的速度延伸著,大多數地鐵隧道都利用TBM土壓力平衡方法施工的,因為北京市位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 母豬護理中的技術創新實例試題及答案
- 深入復習2025年稅務師考試專業知識試題及答案
- 病例分析中的藥學應用案例探討試題及答案
- 應試技巧網絡規劃設計師考試試題及答案
- 流感性感冒試題及答案
- 教師團隊合作的價值試題及答案
- 監測復習進度2024年系統規劃與管理師考試試題及答案
- 嬰兒與父母的互動游戲設計試題及答案
- 健康管理師考試知識體系圖解試題及答案
- 溺水事故面試題及答案
- 中外設計史復習題
- 全國高中青年數學教師優質課大賽一等獎《導數的概念》課件
- 腎上腺疾病診治指南
- 學習解讀2023年新制訂的外國國家豁免法課件
- DB42-T 1969-2023 困境兒童家庭監護能力評估
- 沙漠之心(2009新疆中考記敘文閱讀試題含答案)
- 藥物靶標發現與篩選
- 高中英語-Book 2 Unit 4 When Hamlet meets Peking Opera教學課件設計
- 多模態數據融合與檢索技術PPT完整全套教學課件
- 合同管理法律法規學習制度
- 河流健康評價
評論
0/150
提交評論