



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
3.傾斜角與斜率題號1234567891011得分答案一、選擇題(本大題共7小題,每小題5分,共35分)1.下列說法中正確的是()A.一條直線和x軸的正方向所成的正角,叫作這條直線的傾斜角B.直線的傾斜角α的取值范圍是[0°,180°]C.和x軸平行的直線的傾斜角為180°D.每一條直線都存在傾斜角,但并非每一條直線都存在斜率2.若直線過坐標平面內兩點(1,2),(4,2+eq\r(3)),則此直線的傾斜角是()A.30°B.45°C.60°D.90°3.已知直線l的斜率的絕對值等于eq\r(3),則直線l的傾斜角為().A.60°B.30°C.60°或120°D.30°或150°4.下列說法中,正確的個數是()①任何一條直線都有唯一的斜率;②直線的傾斜角越大,它的斜率就越大;③任何一條直線都有唯一的傾斜角.A.0B.1C.2D5.已知直線PQ的斜率為-eq\r(3),則將直線繞點P沿順時針方向旋轉60°所得的直線的斜率是()\r(3)B.0C.-eq\r(3)\f(\r(3),3)6.如圖L3-1-1所示,若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()圖L3-1-1A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k27.若直線l向上方向與y軸的正方向成30°角,則直線l的傾斜角為()A.30°B.60°C.30°或150°D.60°或120°二、填空題(本大題共4小題,每小題5分,共20分)8.若斜率為2的直線經過坐標平面內(3,5),(a,7),(-1,b)三點,則a+b=________.9.如果直線l過點(1,2),且不過第四象限,那么直線l的斜率的取值范圍是________.10.已知直線l1的傾斜角為α,若直線l2與l1關于x軸對稱,則直線l2的傾斜角為________.11.已知經過坐標平面內兩點A(1,2),B(-2,2m-1)的直線的傾斜角α∈(45°,60°),則實數m的取值范圍為________三、解答題(本大題共2小題,共25分)得分12.(12分)若坐標平面內三點A(2,3),B(3,2),C(eq\f(1,2),m)共線,求實數m的值.13.(13分)已知坐標平面內兩點M(m+3,2m+5),N(m-2,1(1)當m為何值時,直線MN的傾斜角為銳角?(2)當m為何值時,直線MN的傾斜角為鈍角?(3)直線MN的傾斜角可能為直角嗎?得分14.(5分)已知兩點P(a,b),Q(b-1,a+1),若直線PQ與直線l的夾角為45°,則l的傾斜角為()A.135°B.0°或90°C.165°或75°D.90°15.(15分)已知坐標平面內三點P(3,-1),M(6,2),N(-eq\r(3),eq\r(3)),直線l過點P.若直線l與線段MN相交,求直線l的傾斜角的取值范圍.
3.傾斜角與斜率1.D[解析]傾斜角是直線向上方向與x軸的正方向所成的角,故選項A不正確;直線的傾斜角的取值范圍是[0°,180°),故選項B不正確;當直線與x軸平行時,傾斜角為0°,故選項C不正確.2.A[解析]由題意得k=eq\f(2+\r(3)-2,4-1)=eq\f(\r(3),3),∴直線的傾斜角為30°.3.C[解析]由題意得|tanα|=eq\r(3),即tanα=eq\r(3)或tanα=-eq\r(3),∴直線l的傾斜角為60°或120°.4.B[解析]由傾斜角和斜率的定義知③正確.5.A[解析]由直線PQ的斜率為-eq\r(3)得直線的傾斜角為120°,故繞點P沿順時針方向旋轉60°所得的直線的傾斜角為60°,斜率為eq\r(3).6.B[解析]由圖易知:k3<0<k1<k2.7.D[解析]如圖所示,直線l有兩種情況,故l的傾斜角為60°或120°.8.1[解析]根據題意,得eq\b\lc\{(\a\vs4\al\co1(\f(7-5,a-3)=2,,\f(b-5,-1-3)=2,))解得eq\b\lc\{(\a\vs4\al\co1(a=4,,b=-3,))故a+b=1.9.[0,2][解析]由草圖可知,當直線從l1沿逆時針方向旋轉到l2時,直線不經過第四象限.∵kl1=0,kl2=2,∴0≤k≤2.10.180°-α[解析]如圖所示,可得直線l2與l1的傾斜角互補,故直線l2的傾斜角為180°-α.\f(3-3\r(3),2),0[解析]∵傾斜角α∈(45°,60°),∴斜率k∈(1,eq\r(3)).又∵k=eq\f(2m-1-2,-2-1)=eq\f(3-2m,3),∴1<eq\f(3-2m,3)<eq\r(3),解得eq\f(3-3\r(3),2)<m<0.12.解:由題可知,kAB=eq\f(2-3,3-2)=-1,kAC=eq\f(m-3,\f(1,2)-2),∵A,B,C三點共線,∴kAB=kAC,∴eq\f(m-3,\f(1,2)-2)=-1,∴m=eq\f(9,2).13.解:(1)若傾斜角為銳角,則斜率大于0,即k=eq\f(2m+5,m+3-(m-2))=eq\f(2m+4,5)>0,解得m>-2.(2)若傾斜角為鈍角,則斜率小于0,即k=eq\f(2m+5-1,m+3-(m-2))=eq\f(2m+4,5)<0,解得m<-2.(3)當直線MN垂直于x軸時直線的傾斜角為直角,此時m+3=m-2,此方程無解,故直線MN的傾斜角不可能為直角.14.B[解析]∵kPQ=eq\f(a+1-b,b-1-a)=-1,∴直線PQ的傾斜角為135°,故直線l的傾斜角為90°或0°.15.解:考慮臨界狀態.令直線PM的傾斜角為α1,直線PN的傾斜角為α2,由題易知tanα1=1,tanα2=-eq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論